CS 5 “Gold” Practice Final

This practice exam is intended to help you prepare for the final exam by giving you some example problems and a sense of how the final exam will be structured. However, the actual final exam may cover some topics that do not appear on this practice exam and some topics on this practice exam may not be on the final. To prepare for the exam, you should review all of your lecture notes and make sure that you are comfortable with all of the concepts.

Exam Outline

Question #1: loops and recursion in Python == 25 points

Question #2: miscellaneous Python == 25 points

Question #3: Hmmm… assembly language == 25 points

Question #4: Digital logic and circuits == 25 points

Question #5: 2d data in Python == 30 points

Question #6: classes and objects in Python == 40 points

Question #7: uncomputability == 40 points

Question #1 (You do not need to write docstrings for any Python functions.)

Part A

Use a loop to write a Python function isPrime(n), which takes in an integer n and returns True if n is prime and False if n is composite. You may assume that n will be strictly greater than 1.

Part B

Use recursion (no loops!) to write a Python function addPrimes(L), which takes in a list L of integers (all integers will be at least 2) and it returns the sum of only the prime numbers in the list L.

Part C

Consider the following function that returns the nth Fibonacci number, where the zeroth Fibonacci number is 1 and the first Fibonacci number is also 1:
def fib(n):

 if n < 2: return 1

 else: return fib(n-1) + fib(n-2)

If you were to evaluate the following at the Python prompt:

>>> fib(5)

8

How many times was fib called in this evaluation of fib(5)?

Part D

Use recursion (no loops!) to write a Python function uniquify(L), which takes in any list L and returns a list of the distinct elements in the list L. The order of the elements may be preserved, but they do not have to be. For example,

>>> uniquify([42, 'spam', 42, 5, 42, 5, 'spam', 42, 5, 5, 5])

['spam', 42, 5]

>>> L = range(4) + range(3)

>>> uniquify(L)

[3, 0, 1, 2]

Question #2

Write a python function median(L) that takes in a list L of floating-point values and returns the median of that list. You may use any built-in functions Python offers that we have used in CS 5. You may want to write helper function(s) to assist you. Loops or recursion are both fair game, as well.

If the list has an odd number of elements, the median is that element of middling value. More precisely, it is the element of the list for which there are equally many greater elements and lesser element in the list. If the list has an even number of elements, we define the median to be the average of the two elements that are in the middle of the pack.

>>> median([1.0, 100.0, 2.0])

2.0

>>> median([1.0, 100.0, 2.0, 3.0])

2.5

Question #3

Part A (15 points) Consider the Hmmm assembly-language program below. It reads in a single integer – you should assume the input will be strictly positive. After some computation, it prints a single integer before halting.

0 read r0 # r0 is our input, assumed > 0

1 loadn r9 0 # r9 is our "answer"

2 add r1 r0 r1 # r1 = r0; r1 is our "loop index"

3 loadn r3 6 # r3 is a jump target

4 loadn r4 12 # r4 is a jump target

5 loadn r5 14 # r5 is a jump target

6 jzero r1 r5

7 div r2 r0 r1 # r2 = r0/r1; r2 is a "scratch pad"

8 mul r2 r1 r2 # r2 = r1*r2

9 sub r2 r0 r2 # r2 = r0-r2

10 jgtz r2 r4

11 addn r9 1

12 addn r1 -1

13 jump r3

14 write r9

15 halt

Try at least two inputs and indicate what would be printed out at the end in each case. In a sentence or two, what is this program computing?

Part B (10 points) Imagine that we removed the last two statements from the above program (lines 14 and 15). Below, write the assembly-language statements that could replace those lines (and and subsequent lines) so that the resulting program will print a 1 in the case that the original input was a composite number, but will print a 0 in the case that the original input was a prime number. You should consider the integer 1 itself to be a composite number for this problem. A Hmmm reference sheet is at the back of this exam.

Question #4

Your assembly-language primality tester turned out to be too slow and your managers at Acme Composite Materials have decided to implement primality-checking in hardware with digital circuits. They've asked you to prototype a 4-bit primality tester:

Part A

Create a truth table with four bits of input (the binary representation of the values from 0 to 15, inclusive). For each of these sixteen possible inputs, indicate the appropriate output: 1 in the cases that the input is prime, and 0 in the cases that the input is composite. Acme Composites does not consider 0 nor 1 to be a prime.

Part B

Using the minterm expansion principle, sketch a circuit that implements the truth table from Part A.

Question #5

Write a Python function symmetric(S), which takes in a list-of-list-of-numbers, S. You should assume that S is a square array, with an equal number of rows and columns. Then, symmetric should return True if the values of S are diagonally symmetric across the NW-SE axis (northwest-to-southeast axis); it should return False if the values of S are not symmetric across the NW-SE axis.

(Extra! Write this function using recursion and slicing with no loops at all…)

>>> symmetric([[1]])

True

>>> symmetric([[1,42], [42,5]])

True

>>> symmetric([[1,42], [1,1]])

False

>>> symmetric([[1,2,3], [2,4,5], [3,5,6]])

True
Question #6

Below is the start of a Matrix class that initializes its objects to all-0 matrices and has a method that allows individual elements to be set.

class Matrix:

 def __init__(self, nr, nc):

 self.NR = nr

 self.NC = nc

 self.data = [[0]*nc for r in range(nr)]

 def set(self, r, c, value):

 self.data[r][c] = value

Write the method max(self, m2) that takes in a second matrix m2. This method should return a matrix with as many rows as in the shorter of self and m2 and it should return a matrix with as many columns as the narrower of self and m2. Each entry of the returned matrix should be the larger (the max) of the corresponding entries in self and m2. Neither self nor m2 should change, however.

 def max(self, m2):

Question #7

Professor I. Lai of the Pasadena Institute of Technology is interested in computability theory and needs your help with some problems…

1. Dr. Lai scoffs at the rational numbers for being countably infinite and has proposed to replace the rationals with his own Lai Set, the set of numbers that are solutions to an equation AxN == B (for positive integers A, B, and N). Prof Lai claims that the Lai Set must be uncountably infinite, because it contains all sorts of irrational numbers like the square root of two and the 17th root of 42. Is Prof. Lai's argument correct? Is Prof Lai correct about the Lai Set being uncountable?

2. Professor Lai has defined a “string filter” for a given string X to be a program that takes a string as input and returns True if and only if that string is equal to X. That is, a string filter for X must return True if its input is X and must return False for all other input.

Professor Lai claims that he has just written a program named “FilterLength” that takes as input a string X and returns the length of the shortest python program that is a string filter for X. Prove carefully that, in fact, “FilterLength” cannot exist.

3. Construct a finite state machine that accepts exactly those strings of 0’s and 1’s that have at most two identical consecutive bits. For example, “0”, “1”, “00”, “11”, “01”, “10”, “010”, and “00100110” should all be accepted. However, “111”, “000”, “01110”, and “10101000” should all be rejected.

4. Professor Lai forgot to read the two assigned articles on the Loebner Prize. Here are his questions…

a. In his article, Professor Shieber mentions the Kremer prize as a contrast to the Loebner Prize. What event or challenge did the Kremer Prize try to encourage?

b. Why does Professor Shieber believe that the Kremer Prize was appropriate for that event while the Loebner Prize is not appropriate for its event?
Assembly

HMMM Reference Page – tear off to use…

halt

program halts

read rX

stops for user input which is stored in

register rX (input is an 16-bit signed

integer). Prints "Enter number: " to

prompt user for input

write rX

prints the contents of register rX on

standard output

loadn rX, #

loads 8-bit twos-complement integer #

into register rX

load rX, rY

load register rX with memory word

addressed by rY: rX = memory[rY]

store rX, rY

store contents of register rX in memory

word addressed by register rY:

mem[rY] = rX

addn rX, #

adds the 8-bit twos-complement integer

to register rX

add rX, rY, rZ

rX = rY + rZ

sub rX, rY, rZ

rX = rY - rZ

mul rX, rY, rZ

rX = rY * rZ

div rX, rY, rZ

rX = rY / rZ

jump rX

set program counter to address in rX

jzero rX, rY

if rX == 0 then set program counter to

address in rY

jgtz rX, rY

if rX > 0 then set program counter to

address in rY

jltz rX, rY

if rX < 0 then set program counter to

address in rY

jequal rX, rY, rZ
if rX = rY then set program counter to

address in rZ
