

Welcome to CS5 Green

Two handouts today...

- Lecture notes
- Syllabus

Two online surveys...

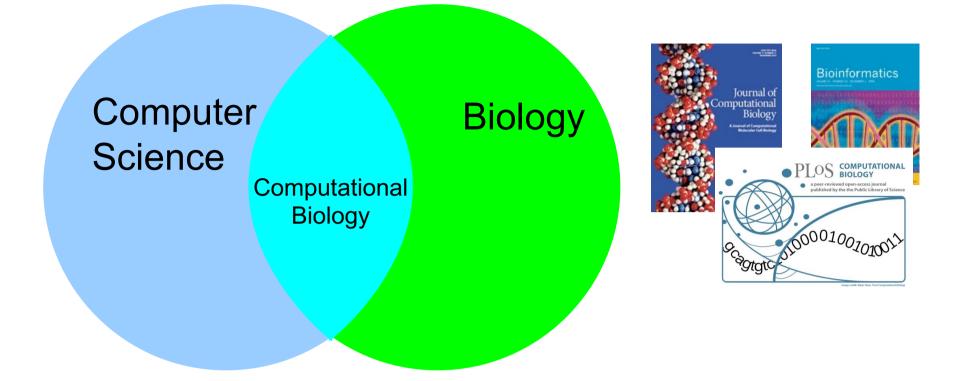
- Intro survey
- Lecture <u>feedback form</u>

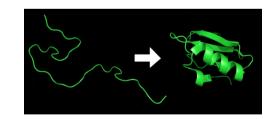
HMC CS5 Green 2021 Feedbar 🗖 📩	\odot	0	٤	Send
Questions Responses 1				
HMC CS5 Green Fall 2021 Feedba	ack			
Name Short answer text				*
Lecture *				
1. Lec0 - Intro + Picobot - 8/31				
2. Lec1 - Intro to Python - 9/2				
3. Lec2 - If, elif, else and for loops - 9/7				

Computing in the context of biological problems

Are sex determination systems in birds and mammals related?

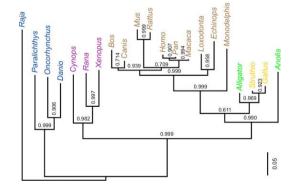
How are Neanderthals related to modern humans?




Neanderthal Museum, Mettman Germany

How does salmonella cause disease?

RESEARCH ARTICLE


Identifying the Important HIV-1 Recombination Breakpoints

To add a note

some text. Hid

Article Metrics Related Content Comments: 0

John Archer^{1#}, John W. Pinney^{1#}, Jun Fan¹, Etienne Simon-Loriere², Eric J. Arts³, Matteo Negroni^{2,4},

Course Website www.cs.hmc.edu/cs5green

CS5: Introduction to Computer Science at Harvey Mudd College CS5Green Web > WebHome Submissions: CS submission site

CS 5 Green: Gelcome!

Course Resources

Lectures, Homework Assignments, and Readings

Week	Tuesday	Thursday	Homework	Reading in CFB
0	08/31/21 - Lec 0: Introduction + picobot (M)	09/02/21 - Lec 1: Intro to Python (M)	Homework 0	0, 1.1-1.5

Syllabus in a Nutshell

Lectures: Tuesday and Thursday, 9:35-10:50, Shan 2460

Labs: Thursdays 1:15-3:15 PM in Shan B442 Recommended (and incentivized), but not required

Office hours and grutoring hours on the website!

Piazza Q&A system

Homework Lab Problem Several additional homework problems

> Pair programming encouraged on some problems Due Mondays at 11:59 PM (Gradescope)

Three CS 5 Greenbacks (aka "Euros")

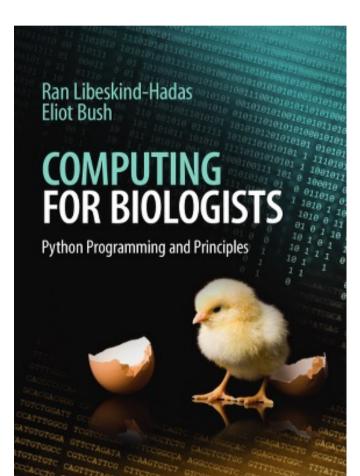
Syllabus in a Nutshell

Pair Programming Policy: For some questions, you are (optionally) allowed to work as a pair. In a pair you should always program together and switch every 30 minutes.

Honor Code Policy: Other than pair programming, discussions OK, sharing or searching for code not permitted.

Grading: Homework + Final Project: 65% Midterm: (Thursday, Nov 4 in-class): 10% Final Exam: (Tuesday, December 14, 2pm-5pm): 20% Participation/worksheets: 5% (missing up to 3 is OK)

To pass CS 5, one must have a passing grade on all components (Homework, Exams, Participation)

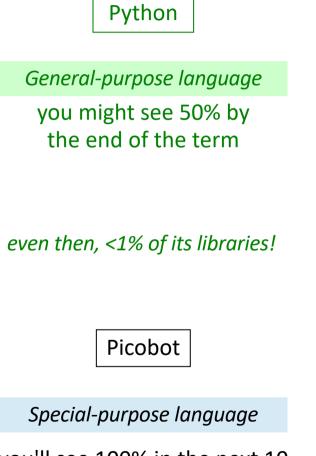

Pass fail vs. graded

Looking Ahead www.cs.hmc.edu/cs5green

1	09/07/21 - Lec 2: if-elif-else and for loops (M)	09/09/21 - Lec 3: Loops on Strings and Lists (M)	Homework 1	1.6-1.11, 2
2	09/14/21 - Lec 4: Writing Larger Programs (M)	09/16/21 - Lec 5: While loops (M)	Homework 2	3, 4
3	09/21/21 - Lec 6: Intro to Recursion (J)	09/23/21 - Lec 7: Milk + recursion (J)	Homework 3	5
4	09/28/21 - Lec 8: Use it or Lose it (J)	09/30/21 - Lec 9: Dictionaries (J)	Homework 4	6, 7.1-7.4
5	10/05/21 - Lec 10: Alignment (J)	10/07/21 - Lec 11: Care packages (J)	Homework 5	7.5, 7.6, 8.1-8.7
6	10/12/21 - Lec 12: Hmmm 1 (G)	10/14/21 - Lec 13: Hmmm 2 (G)	No HW over fall break	12
7	10/19/21 - Happy fall break!	10/21/21 - Lec 15: Recursion on Trees (E)	Homework 6/7	9
8	10/26/21 - Lec 16: UPGMA (E)	10/28/21 - Lec 17: More trees! (E)	Homework 8	10, 11
9	11/02/21 - Lec 14: RNA Folding (E)	11/04/21 - Midterm	Homework 9	
10	11/09/21 - Lec 18: Oops (E)	11/11/21 - Lec 19: Oops etc. (E)	Homework 10	CS For All Chapter 6
11	11/16/21 - Lec 20: Shapes! (E)	11/18/21 - Lec 21: Finishing up Oops (E)	Homework 11	CS For All Chapter 6
12	11/23/21 - Lec 22: Projects! (MJE)	11/25/21 - Happy Thanksgiving!	Project Descriptions	
13	11/30/21 - Theory 1 (G)	12/02/21 - Theory 2 (G)	Work on Projects	
14	12/07/21 - Theory 3 (G)	12/09/21 - Finale (MJE)	Work on projects	

Textbook

OAK (Occasionally Asked Kweschens)



Q: Will I learn as much CS here as I would in CS 5 Gold?A: Yes!

Q: Are there other courses combining CS and Bio at Mudd A: Yes! Bio 52, MCB118b, Bio 188, and a whole major (Mathematical and Computational Biology)

Our first programming language

Picobot!

you'll see 100% in the next 10 minutes

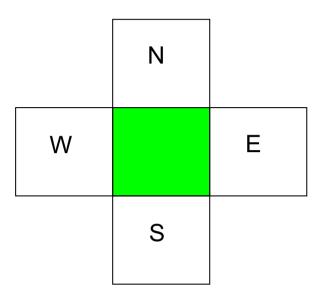
	Discobot Rules # These lines are comments. # Remember that rules are formatted as # State Surroundings -> Move MesState # Picobot starts in state 0. # Discobot starts in state 0. # Here, state 0 goes N as far as possible 0 x*** -> N 0 # if there's nothing to the N, go N 0 x*** -> X 1 # if N is blocked, switch to state 1
	<pre># and state 1 goes S as far as possible 1 ***x -> S 1 # if there's nothing to the S, go S 1 ***S -> X 0 # otherwise, switch to state 0 Enter rules for Picobot Be sure to hit "Enter rules" after making changes. Messages</pre>
	OK
Go Stop Step Reset	MAP>
0 xxxx State Surroundings Previous Rule N	528 Cells to go
West East - Teleport Robot -	North South

The Picobot simulator

www.cs.hmc.edu/picobot

Introductions: Picobot

Murata Girl

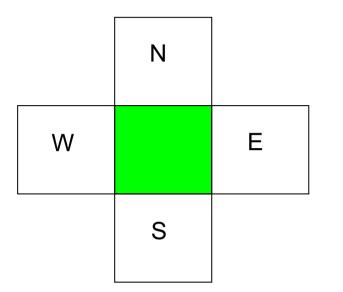


walls **Picobot** area not covered (yet!) area already covered

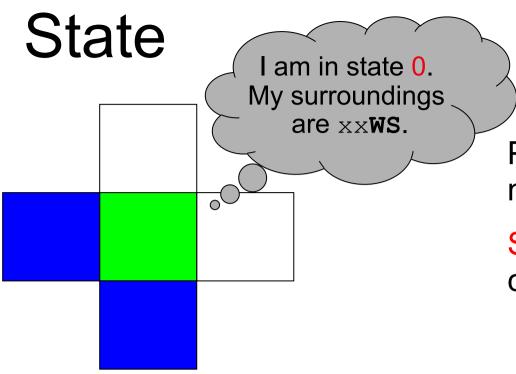
Goal: whole-environment coverage with only *local sensing*...

Roomba

Environment in the NEWS!

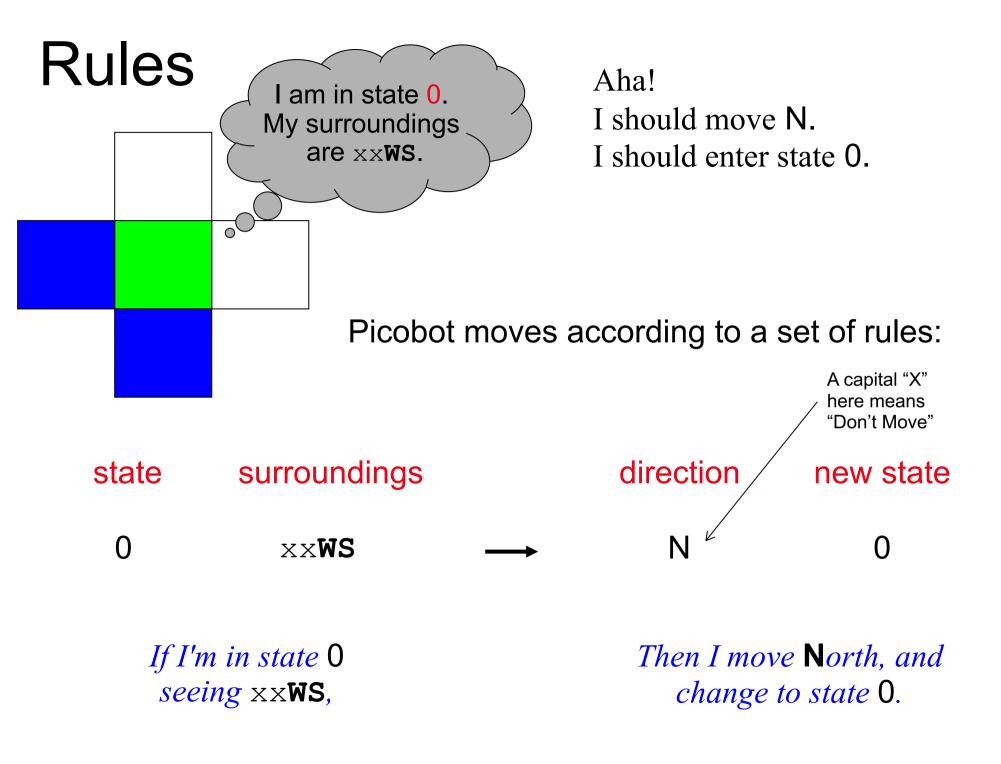


Picobot can only sense things directly to the N, E, W, and S

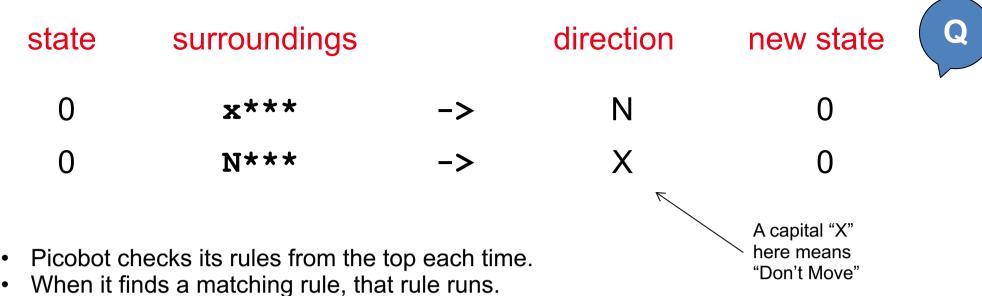

occupiec blue letter		We can represent a particular environment with a text "code".
		NXWX
	open white x	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Surroundings

How many distinct surroundings are there?



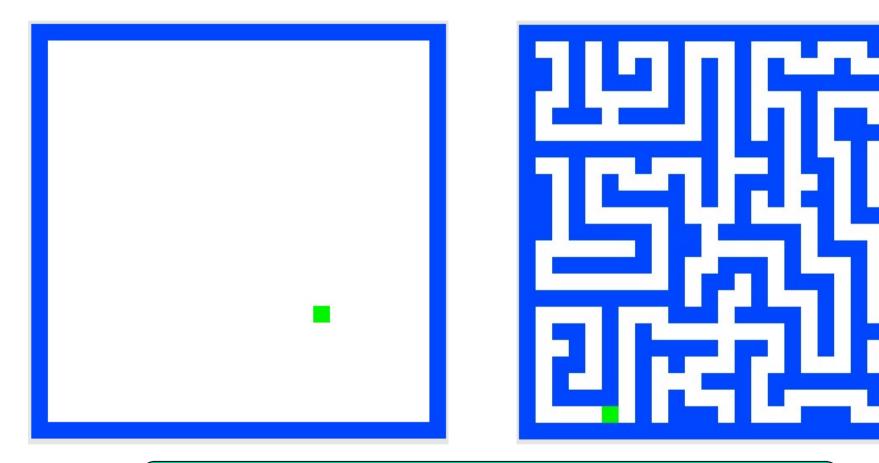
Picobot's memory is a single number, called its state.


State is the *internal context* of computation.

Picobot always starts in state 0.

State and surroundings represent everything the robot knows about the world

- Only one rule is allowed per state and surroundings.
 - 1. What will this set of rules do to Picobot?

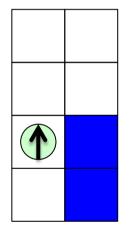

2. Try to add some rules so that we go to the bottom now and then back up forever! (Hint: it will require adding a state 1)

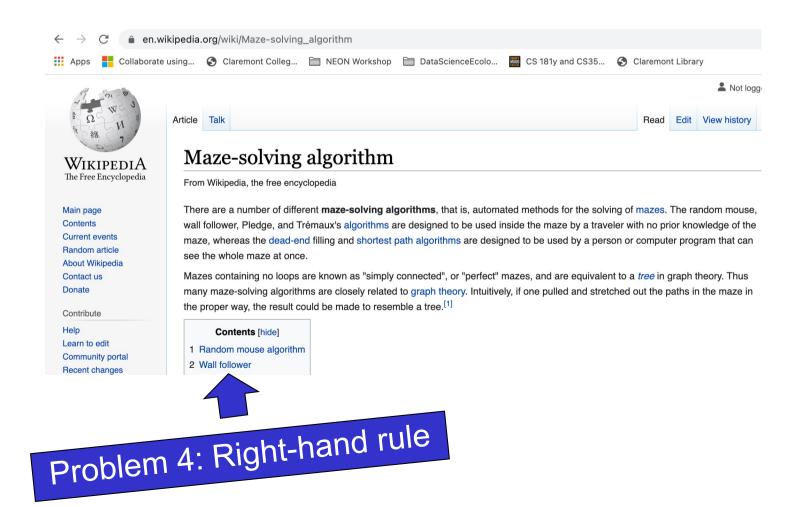
Write rules that will always cover these two rooms. (*separate* sets of rules are encouraged...)

Lab Problem 2

Problem 4

Your "program" can be slow but it should work for any starting location and for any wall-connected maze!


DEMO!


our best: 3 states, 7 rules

our best: 4 states, 8 rules

Hint: a word about states

Imagine state 0 means "pointing north" state 1 means "pointing east" state 2 ... state 3 ...

Introductions: Python

Richer syntax allows greater expressiveness!

```
def alife sim(num gens, pop size, num to select, network, inhibitor 1):
    """Do an artificial life simulation for numGens generations with
    popSize organisms."""
   # create initial population
    fit d = \{\}
    pop l = []
    for org in create initial pop(pop size, network, inhibitor 1):
        fitness = org.get fitness()
        pop l.append((fitness, org))
        fit d[hash(org)] = fitness
    # simulate
   top l = get top orgs(pop l, num to select)
                                                   # get top orgs
    for i in range(num gens):
        pop 1 = []
        for j in range(pop size):
            to replicate = random.choice(top 1)
            new org = to replicate[1].replicate()
            # get fitness
            if hash(new org) in fit d:
                fitness = fit d[hash(new org)]
            else:
                fitness = new org.get fitness()
                fit d[hash(new org)] = fitness
            pop l.append((fitness, new org))
        topL = get top orgs(pop 1, num to select)
        print("gen:", i, ":", top 1[0])
        if i 1%50 == 0:
                                             d the ONION
            fit d.clear()
    return top 1[0]
```

Learning to program is a bit like learning a foreign language!

Strange syntax! Funky grammar

Rules Grammar Change English Traditional Replaced To Be New Syntax With

After all, there are thousands of languages to choose from!

Why Python?

- Relatively "nice" syntax
- Emerging as language of choice in many fields
- Packages for graphics, audio, scientific computing, ...

```
class HelloWorld {
  static public void main( String args[] ) {
    System.out.println( "Hello World!" );
  }
} Java
```

```
#include <iostream.h>
```

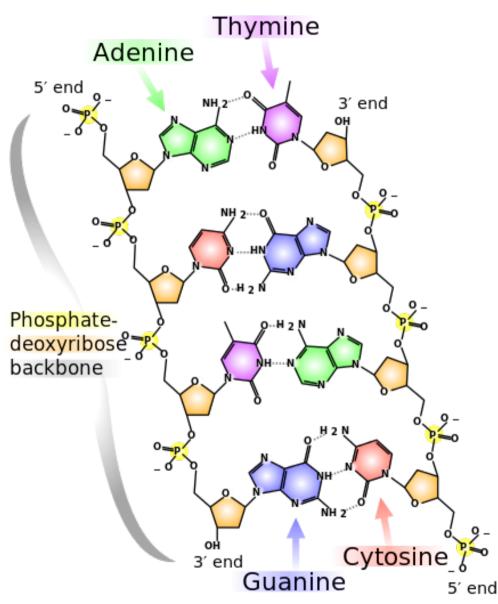
```
main() C++
{
    cout << "Hello World!" << endl;
    return 0;
}</pre>
```


The Python interpreter

bush — python — 80×24

bush@EB-Laptop:~\$ python
Python 3.5.2 |Anaconda 4.1.1 (x86_64)| (default, Jul 2 2016, 17:52:12)
[GCC 4.2.1 Compatible Apple LLVM 4.2 (clang-425.0.28)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Python Demo


Python strings

>>> biologist1 = "Watson"
>>> biologist1
'Watson'

```
>>> biologist2 = 'Crick'
>>> biologist2
'Crick'
```


DNA is double stranded

Representing DNA molecules on a computer

- 5' AATGCCGTGCTTGTAGACGTA 3'
- 3' TTACGGCACGAACATCTGCAT 5'

By convention, we represent as a single string going 5' to 3'.

AATGCCGTGCTTGTAGACGTA or TACGTCTTCAAGCACGGCATT

- Either of these two strings could be be used
- These are reverse
 complements of each other

Using strings: length and index

Α	А	Т	G	С	С	G	Т	G	С	Т	Т
0	1	2	3	4	5	6	7	8	9	10	11

>>> myDNA = "AATGCCGTGCTT"

>>> len(myDNA)

12

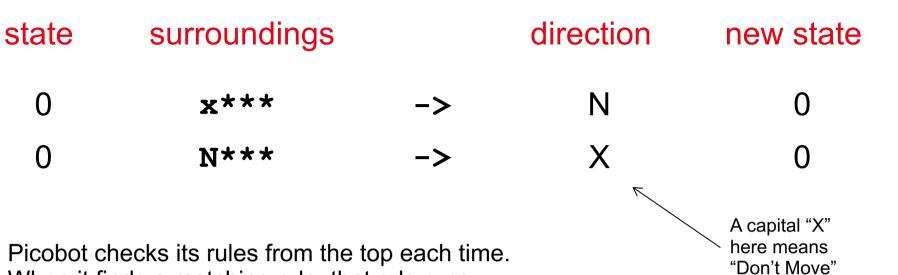
>>> myDNA[0]

```
>>> myDNA[3]
'G'
```

>>> myDNA[20]
IndexError: string index out of range

Using strings: slicing

>>> myDNA = "AATGCCGTGCTT"						10 Т	
>>> myDNA[0:4] 'AATG'							
>>> myDNA[3:7] 'GCCG'							
>>> myDNA[1:] 'ATGCCGTGCTT'							
>>> myDNA[:4] 'AATG'							
>>> myDNA[10:42] 'TT'							


Reminders:

- Introductory Survey (<u>https://forms.gle/HMqDGHNjMHTfFHHL6</u>)
- Lecture feedback form (<u>https://forms.gle/aPmkpXDUTp4Xo4CV7</u>)

Next lecture:

- More Python syntax to help analyze DNA sequences
- Fun with functions!

٠

- When it finds a matching rule, that rule runs.
- Only one rule is allowed per state and surroundings.
- 1. What will this set of rules do to Picobot?

2. Try to add some rules so that we go to the bottom now and then back up forever! (Hint: it will require adding a state 1)