
orangutan gorilla human common
chimpanzee

bonobo

~15 MYA

~7 MYA

~6 MYA

~3 MYA

Trees and Human Evolution

Coming Soon to
CS 5 Green

• Hmmm lab/homework
• Phylogenetics
• Midterm (in class 11/4)
• OOPs
• CS Theory
• End-of-semester projects!

What we are
ANTicipating…

Learning Goals
• Describe how data is stored in memory (just a peek)

• Introduce biological question
• Describe tree terminology and representation
• Practice writing functions on trees

your computer’s memory

L (length is 3)

L (length is 3)

M (length is 3)

This is called
“shallow copy”

Lists Revisited

>>> L = [4, 5, 7]

6 S

>>> M = L

6 4 5 7 S

6 4 5 7 S

6 4 5 7 S 4 5 7 9

L (length is 3)

M (length is 3)

N (length is 4)

>>> N = L + [9]

>>> L = [4, 5, 7]
>>> M = L
>>> N = L + [9]

>>> L.append(6)
>>> L
[4, 5, 7, 6]
>>> M

>>> N

your computer’s memory

Lists Revisited

6 4 5 7 S 4 5 7 9

L (length is 3)

M (length is 3)

N (length is 4)

6 4 5 7 6 S 4 5 7 9

L (length is 4)

M (length is 4)

N (length is 4)

Q

>>> L = [4, 5, 7]
>>> M = L
>>> N = L + [9]

>>> L.append(6)
>>> L
[4, 5, 7, 6]
>>> M
[4, 5, 7, 6]
>>> N
[4, 5, 7, 9]

your computer’s memory

Lists Revisited

6 4 5 7 S 4 5 7 9

L (length is 3)

M (length is 3)

N (length is 4)

6 4 5 7 6 S 4 5 7 9

L (length is 4)

M (length is 4)

N (length is 4)

S

>>> T = (4, 5, 7)
>>> T[0]
4
>>> T[1:]
(5, 7)
>>> len(T)
3
>>> T[0] = 42
BARF!
>>> T.append(42)
BARF!

your computer’s memory

6 4 5 7 S

T (length is 3)

Tuples are immutable lists

Learning Goals
• Describe how data is stored in memory (just a peek)

• Introduce biological question
• Describe tree terminology and representation
• Practice writing functions on trees

Neanderthal type specimen

https://www.msu.edu/~heslipst/contents/ANP440/images/Neanderthal_1_langle.jpg
http://humanorigins.si.edu/evidence/human-fossils/fossils/la-chapelle-aux-saints
http://anthropologynet.files.wordpress.com/2007/06/neander-valley.jpg

the old man of La Chapelle

Neanderthals and Modern Humans

orangutan gorilla human common
chimpanzee

bonobo

~15 MYA

~7 MYA

~6 MYA

~3 MYA

Trees and Human Evolution

2.0 1.5 1.0 0.5

?

Sangiran 17, 1.3-1.0 MYA,
Sangiran Indonesia

Homo erectus: first undisputed
world traveler

H. erectus
in Africa

H. erectus
in Europe

H. erectus
in Asia

H. sapiens
in Africa

H. sapiens
in Europe

H. sapiens
in Asia

H. erectus
in Africa

H. erectus
in Europe

H. erectus
in Asia

H. sapiens
in Africa

H. sapiens
in Europe

H. sapiens
in Asia

intermediate species
possible

Out of Africa vs. multiregional origin
of modern humans

Modern
Human Neanderthal Modern

Human
Modern
Human

Multiregional model

Differing
predictions…

Modern
HumanNeanderthal Modern

Human
Modern
Human

Out of Africa model

Learning Goals
• Describe how data is stored in memory (just a peek)

• Introduce biological question
• Describe tree terminology and representation
• Practice writing functions on trees

“X”

“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

What about the Sontag,
South, East, and
Atwood Groodies?

How do we represent this in Python?

these are called leaf
nodes or leaves or

tips of the tree

Phylogenetic Trees

these are called
internal nodes

“X”

“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

groodies = ("X",
("Y",

("W", (), ()),
("Z",

("E", (), ()),
("L", (), ())

)
),
("C", (), ())

)

RLR (root, left, right) format

Draw this tree…

tr = ('Q',
('R',

('T',
('V',(),()),
('Z',(),()),

),
('S',

('X',(),()),
('W',(),()),

)
),
('Y',(),())

)

Q

Draw this tree…

tr = ('Q',
('R',

('T',
('V',(),()),
('Z',(),()),

),
('S',

('X',(),()),
('W',(),()),

)
),
('Y',(),())

)

S

V

Z

X

W

Y

T

S

R

Q

Learning Goals
• Describe how data is stored in memory (just a peek)

• Introduce biological question
• Describe tree terminology and representation
• Practice writing functions on trees

def node_count(tree):
"""Returns the total number of nodes in the given tree."""

>>> node_count(("Yoohoo",(),()))
1
>>> node_count(groodies)
7

How many nodes are in this tree?

“X”
“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

You should always
assume that if one child
is () then so is the other!

Fill this in (in your notes)!

Q

It would be a
shame to “leaf”
out the base case!

def node_count(tree):
"""Returns the total number of nodes in the given tree."""
root, left, right = tree # root = tree[0], left = tree[1], right = tree[2]
if left == (): return 1 # a leaf
else: # an internal node

return 1 + node_count(left) + node_count(right)

>>> node_count(("Yoohoo",(),()))
1
>>> node_count(groodies)
7

How many nodes are in this tree?

“X”
“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

You should always
assume that if one child
is () then so is the other!

Fill this in (in your notes)!

S

Is my favorite species in this tree?
>>> find("E", groodies)
True
>>> find("Sontag", groodies)
False

def find(species, tree):
"""Returns True if species is in tree and False otherwise."""
root, left, right = tree

“X”
“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

Q

Is my favorite species in this tree?
>>> find("E", groodies)
True
>>> find("Sontag", groodies)
False

def find(species, tree):
"""Returns True if species is in tree and False otherwise."""
root, left, right = tree
if root == species: return True # found it at the root!
if left == (): return False
else:

return find(species, left) or find(species, right)

“X”
“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

S

height

def height(tree):
"""Returns the height of the given Tree."""
root, left, right = tree

>>> height(groodies)
3
>>> height(("spam", (), ()))
0

Worksheet

“X”
“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

The height of a tree is the
length of the path from the root
to the deepest node in the tree.

Q

height

def height(tree):
"""Returns the height of the given Tree."""
root, left, right = tree
if left == (): return 0 # a leaf
else: # an internal node

return 1 + max(height(left), height(right))

>>> height(groodies)
3
>>> height(("spam", (), ()))
0

Worksheet

“X”
“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

The height of a tree is the
length of the path from the root
to the deepest node in the tree.

S

node_list
>>> node_list(groodies)
['X', 'Y', 'W', 'Z', 'E', 'L', 'C']

def node_list(tree):
"""Returns the list of nodes in a given tree."""
root, left, right = tree

“X”
“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

Q

node_list
>>> node_list(groodies)
['X', 'Y', 'W', 'Z', 'E', 'L', 'C']

def node_list(tree):
"""Returns the list of nodes in a given tree."""
root, left, right = tree
if left == (): return [root]
else:

return [root] + node_list(left) + node_list(right)

“X”
“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

S

leaf_list

def leaf_list(tree):
"""Returns the list of leaves in a given Tree."""
root, left, right = tree

>>> leaf_list(groodies)
['W', 'E', 'L', 'C']

Q

“X”
“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

leaf_list

def leaf_list(tree):
"""Returns the list of leaves in a given Tree."""
root, left, right = tree
if left == (): return [root]
else:

return leaf_list(left) + leaf_list(right)

>>> leaf_list(groodies)
['W', 'E', 'L', 'C']

S

“X”
“Y” “Z”

West Dorm Groody (“W”)

East Dorm Groody (“E”)

Linde Dorm Groody (“L”)

Case Groody (“C”)

Traversing Trees
• Print name of every node in the tree

so that parents always appear…
– before children (preorder)

– after children (postorder)

dog human mouse rat

Anc0

Anc1

Anc2

Anc0
dog
Anc1
human
Anc2
mouse
rat

dog
human
mouse
rat
Anc2
Anc1
Anc0

Traversing Trees
Preorder (parents first)
def preorder_print(tree):

root, left, right = tree

Postorder (parents after)
def postorder_print(tree):

root, left, right = tree

Use recursion. Start
with base case!

Traversing Trees
Preorder (parents first)
def preorder_print(tree):

root, left, right = tree

if left == ():
print(root)

else:
print(root)
preorder_print(left)
preorder_print(right)

Postorder (parents after)
def postorder_print(tree):

root, left, right = tree

if left == ():
print(root)

else:
postorder_print(left)
postorder_print(right)
print(root)

base case

print
then
recur

Use recursion. Start
with base case!

recur
then
print

S

