
CS 5 Green Today

Sports: CS 5 Green Prof runs to
class in record time. Were
steroids involved?

News in Brief

Claremont, CA: Researchers at Harvey Mudd College
have made an extremely important new discovery said a
spokesperson for the College. The discovery was
evidently discovered while the researchers were trying to
discover another discovery. “The professors discovered
that their discovery had not been previously discovered,
which is an important discovery in its own right,” said the
excited spokesperson. A number of prominent scientists
also expressed their tremendous enthusiasm and said that
they looked forward to reading what was actually
discovered.

New computer program predicts
today’s weather:
IndexError: list index
out of range

HMC CS 5 Green Professors discover
new discovery

HMC CS Department
to replace Apple
computers with new
Pumpkin brand computers.
(p. 42)

Talking tree debuts in CS 5
Green!

Entertainment: CS 5 Green
book to be made into
feature-length movie starring
George Clooney as the
happy turtle.

Learning Goals
• Review functions on trees
• Introduce a distance-based approach to

phylogenetic tree reconstruction (UPGMA)

From Darwin’s notebooks, 1837

Phylogenetic Trees…

Really?

The only figure in On the Origin of
Species by Natural Selection (Darwin, 1859)

From the 6th edition (1872): “The affinities of all the beings of the same class have
sometimes been represented by a great tree. I believe this simile largely speaks the
truth. The green and budding twigs may represent existing species; and those
produced during former years may represent the long succession of extinct species.”

“X”

“Y”
“Z”

West Dorm
Groody (“W”)

East Dorm
Groody (“E”)

Linde Dorm
Groody (“L”)

Case Groody
(“C”)

>>> mrca("L", "E", groodies) # use find as a helper!
'Z'
>>> mrca("W", "E", groodies)
'Y'
>>> mrca("W", "C", groodies)
'X'
>>> mrca("W", "Prof Bush", groodies)
None

>>> find("L", groodies)
True

More recursion on trees: mrca

mrca
“X”

“Y”
“Z”

West Dorm
Groody (“W”)

East Dorm
Groody (“E”)

Linde Dorm
Groody (“L”)

Case Groody
(“C”)

def mrca(species1, species2, tree):
"""Return the name of the most recent commmon ancestor of
species1 and species2. If there isn't one, return None.""“
root, left, right = tree

Notes
You should use
find here…

Q

mrca
“X”

“Y”
“Z”

West Dorm
Groody (“W”)

East Dorm
Groody (“E”)

Linde Dorm
Groody (“L”)

Case Groody
(“C”)

def mrca(species1, species2, tree):
"""Return the name of the most recent commmon ancestor of
species1 and species2. If there isn't one, return None."""
root, left, right = tree
if left == ():

return None
elif (not find(species1, tree)) or (not find(species2, tree)):

return None
else:

if find(species1, left) and find(species2, left):
return mrca(species1, species2, left)

elif find(species1, right) and find(species2, right):
return mrca(species1,species2, right)

else:
return root

Notes
You should use
find here…

S

Input: DNA or protein
sequences for each species

Output: Species tree

D. Desjardin, K. Peay, T. Bruns, Mycologia 103(5), 2011

Phylogenetic Reconstruction

G F S
G 0 6 12
F 6 0 12
S 12 12 0

Groody CATCAACCAGTGACCAGTATAGGACGCCC
Froody CAACACTCAGTGACAAGTCTAGCACGCCC
Snoody AATCGCCCGGCGTCAGGCATAGCTAGCGC

Distance-Based Approach

G F S
G 0 6 12
F 6 0 12
S 12 12 0

(6.0,
('Snoody', (), ()),
(3.0,

('Groody', (), ()),
('Froody', (), ())

)
)

6.0

3

Snoody

Groody

Froody

Current time
(“time 0”)

Distance-Based Approach

Unweighted Pair Group Method with
Arithmetic Mean (UPGMA) Algorithm

Groody
Froody
Snoody

G F S
G 0 6 12
F 6 0 12
S 12 12 0

Q

Unweighted Pair Group Method with
Arithmetic Mean (UPGMA) Algorithm

(G,F) S
(G,F) 0 12
S 12 0

S

Groody
Froody
Snoody

G F S
G 0 6 12
F 6 0 12
S 12 12 0

G

F

3

D1((G,F),S) = (D0(G,S) + D0(F,S)) / 2
= (12 + 12) / 2 = 12

S

6

Try This One…

The matrix is
symmetric, so we
just need to keep
the bottom or top
half!

Aoody
Boody
Coody
Doody
Eoody

A B C D E
A 0
B 4 0
C 16 16 0
D 16 16 8 0
E 16 16 8 6 0

This algorithm’s
“bark” is worse
than it’s bite.

Worksheet Q

Try This One…
D0

A B C D E
A 0
B 4 0
C 16 16 0
D 16 16 8 0
E 16 16 8 6 0

Worksheet S

D2
(A,B) C (D,E)

(A,B) 0
C 16 0
(D,E) 16 8 0

D1
(A,B) C D E

(A,B) 0
C 16 0
D 16 8 0
E 16 8 6 0

A

B

2

8

D

E

3

4

C

D3
(A,B) (C,(D,E))

(A,B) 0
(C,(D,E)) 16 0

DEMO!

I wood love to
see this in

action!

Implementing UPGMA

1 Groody
2 Froody
3 Snoody

1 2 3
1 0 6 12
2 6 0 12
3 12 12 0

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())
N3 = ("Snoody", (), ())
groodies_lst = [N1, N2, N3]
groodies_mat = {(N1, N1):0, (N1, N2):6, (N1, N3):12,

(N2, N1):6, (N2, N2):0, (N2, N3):12,
(N3, N1):12, (N3, N2):12, (N3, N3):0}

Let’s see this in the
provided
mitoData.py file

1. For all pairs of trees in the groodies_lst, find the closest pair

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())
N3 = ("Snoody", (), ())
groodies_lst = [N1, N2, N3]
groodies_mat = {(N1, N1):0, (N1, N2):6, (N1, N3):12,

(N2, N1):6, (N2, N2):0, (N2, N3):12,
(N3, N1):12, (N3, N2):12, (N3, N3):0}

1. For all pairs of trees in the groodies_lst, find the closest pair

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())
N3 = ("Snoody", (), ())
groodies_lst = [N1, N2, N3]
groodies_mat = {(N1, N1):0, (N1, N2):6, (N1, N3):12,

(N2, N1):6, (N2, N2):0, (N2, N3):12,
(N3, N1):12, (N3, N2):12, (N3, N3):0}

1. For all pairs of trees in the groodies_lst, find the closest pair

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())

2. Remove those from the groodies_lst groody_lst.remove(N1)
groody_lst.remove(N2)

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())
N3 = ("Snoody", (), ())
groodies_lst = [N1, N2, N3]
groodies_mat = {(N1, N1):0, (N1, N2):6, (N1, N3):12,

(N2, N1):6, (N2, N2):0, (N2, N3):12,
(N3, N1):12, (N3, N2):12, (N3, N3):0}

1. For all pairs of trees in the groodies_lst, find the closest pair

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())

2. Remove those from the groodies_lst

3. Make a new tree by joining these two trees…

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())
N3 = ("Snoody", (), ())
groodies_lst = [N1, N2, N3]
groodies_mat = {(N1, N1):0, (N1, N2):6, (N1, N3):12,

(N2, N1):6, (N2, N2):0, (N2, N3):12,
(N3, N1):12, (N3, N2):12, (N3, N3):0}

1. For all pairs of trees in the groodies_lst, find the closest pair

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())

2. Remove those from the groodies_lst

3. Make a new tree by joining these two trees…

new_tree = (3.0, N1, N2)
= (3.0, ("Groody", (), ()), ("Froody", (), ()))

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())
N3 = ("Snoody", (), ())
groodies_lst = [N1, N2, N3]
groodies_mat = {(N1, N1):0, (N1, N2):6, (N1, N3):12,

(N2, N1):6, (N2, N2):0, (N2, N3):12,
(N3, N1):12, (N3, N2):12, (N3, N3):0}

1. For all pairs of trees in the groodies_lst, find the closest pair

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())
N3 = ("Snoody", (), ())
groodies_lst = [N3, (3.0, ("Groody", (), ()), ("Froody", (), ()))]
groodies_mat = {(N1, N1):0, (N1, N2):6, (N1, N3):12,

(N2, N1):6, (N2, N2):0, (N2, N3):12,
(N3, N1):12, (N3, N2):12, (N3, N3):0}

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())

2. Remove those from the groodies_lst

3. Make a new tree by joining these two trees…

new_tree = (3.0, N1, N2)
= (3.0, ("Groody", (), ()), ("Froody", (), ()))

4. Add this new tree to the groodies_lst

N1 N2

5. Update the distance matrix…

N1 = ("Groody", (), ())
N2 = ("Froody", (), ())
N3 = ("Snoody", (), ())
groodies_lst = [N3, (3.0, ("Groody", (), ()), ("Froody", (), ()))]
groodies_mat = {(N1, N1):0, (N1, N2):6, (N1, N3):12,

(N2, N1):6, (N2, N2):0, (N2, N3):12,
(N3, N1):12, (N3, N2):12, (N3, N3):0}

We are still holding on to N1 and N2,
even though we have removed them from the groodies_lst!

N1 N2

groodies_mat[(N3, new_tree)] = …
groodies_mat[(new_tree, N3)] = …

Implementing UPGMA

findClosestPair(speciesList, Distances):
"""Takes a list of species trees and the distance dictionary

as input and returns a tuple (X, Y) where X and Y are in the
list and have the minimum distance between any two items in the list."""

updateDist(speciesList, Distances, newTree):
"""Takes a list of species trees, the distance dictionary, and a newTree

that was just formed by merging two trees found by findClosestPair.
Those two trees can be found by looking inside newTree. Those two trees
are removed from the distance dictionary and the newTree is added to the
dictionary."""

upgma(speciesList, Distances):
"""Returns the phylogenetic tree constructed by the UPGMA algorithm."""

findClosestPair: 7 lines
updateDist: 8 lines
upgma: 12 lines

Updating the distance dictionary:
a subtlety

a b c d
a 0
b 4 0
c 6 6 0
d 12 12 9 0

a,b c d
a,b 0
c 6 0
d 12 9 0

a,b,c d
a,b,c 0
d ??? 0

a bc

2
3

Updating the distance dictionary:
a subtlety

a b c d
a 0
b 4 0
c 6 6 0
d 12 12 9 0

a,b c d
a,b 0
c 6 0
d 12 9 0

a,b,c d
a,b,c 0
d 11 0

When we calculate distances between
nodes with different numbers of
leaves, we should weight by the
number of leaves.

a,b c

2 leaves 1 leaf = 3 total

12 × 2/3 + 9 × 1/3 = 11

a bc

2
3

new_tree = ("Anc", T1, T2)
dist(new_tree, T3) = dist(T1, T3) x leaf_count(T1)/leaf_count(newTree) +

dist(T2, T3) x leaf_count(T2)/leaf_count(newTree)

T1 = (a,b)
T2 = c
T3 = d

Inferring time…

A

B

C

D

3

4.5

10

The scale function you write in lab will be useful…

https://en.wikipedia.org/wiki/Rhea_(bird)
https://en.wikipedia.org/wiki/Ostrich
https://en.wikipedia.org/wiki/Gondwana

Rhea
(South America)

Ostrich
(Africa)

UPGMA assumes a molecular clock

G F S
G 0 6 12
F 6 0 12
S 12 12 0

A note on biogeography/migrations

