
“We wonder about Robert Frost” - Trees

Hey! How come no
turtles in this tree?

“I wonder about Trees” –Robert Frost

Learning Goals
• Describe the parsimony principle
• Introduce method for enumerating all trees

Trees and the parsimony principle

1 CCAGT
2 GCACT
3 CCTGA
4 GCTGT

Data

1 A

2 A

3 T

4 T

1 A

2 A

3 T

4 T

Trees and the parsimony principle

1 CCAGT
2 GCACT
3 CCTGA
4 GCTGT

Data

1 A

2 A

3 T

4 T

1 A

2 A

3 T

4 T

“Better”, i.e. more parsimonious

Another general strategy
for inferring phylogenies

● Generate all possible trees
● Pick the most parsimonious given some data

2

1

1 2 3

Generating all possible trees
from the ground up

species (leaves)

possible trees 1 1 3

1

2

3

1

3

2

1

2

3

4

1

1

2

3

Draw all possible trees that result from adding a species 4 to this tree.
Q

1

2

3

1

2

4

3

1

2

3

1

2

3

4

1

2

3

4

1

2

3

1

2

3

4

1

2

3

1

2

3

4

Draw all possible trees that result from adding a species 4 to this tree.
S

2

1

1

2

3

1

3

2

1

2

3

1 2 3

1

4

Q

2

1

1

2

3

1

3

2

1

2

3

1

2

4

3

1

3

4

2

4

1

3

2

1

2

3

4

2

1

3

4

1

4

3

2

1

2

3

4

1

3

2

4

1

4

3

2

1

4

3

2

1

4

2

3

1

2

3

4

1

4

3

2

1

4

2

3

1

2

3

4

1 2 3 4

1

S

A convention for naming
internal/ancestral nodes

tree = ('Anc', (1,(),()) , (2,(),()))

1

2

'Anc'

1

2

add_leaf(new_leaf, tree)

The add_leaf function

3 1

3

2

1

2

3

1

3

2

>>> leaf = (3, (), ())
>>> tree = ('Anc', (1,(),()) , (2,(),()))
>>> add_leaf(leaf, tree)
[

('Anc', (3, (), ()) , ('Anc', (1, (), ()), (2, (), ()))),
('Anc', ('Anc', (3, (), ()), (1, (), ())), (2, (), ())),
('Anc', (1, (), ()), ('Anc', (3, (), ()), (2, (), ()))),

]

Which illustration does the last tuple tree correspond to?

The add_leaf function
1

2

3

1

2

3

4

1

2

3

4

1

4

3

2

1

4

3

2

1

2

4

3

add_leaf(new_leaf, tree)
4

>>> leaf = (4, (), ())
>>> tree = ('Anc', (3, (), ()) , ('Anc', (1, (), ()), (2, (), ())))
>>> add_leaf(leaf, tree)
[
('Anc', (4, (), ()), ('Anc', (3, (), ()), ('Anc', (1, (), ()), (2, (), ())))),
('Anc', ('Anc', (4, (), ()), (3, (), ())), ('Anc', (1, (), ()), (2, (), ()))),
('Anc', (3, (), ()), ('Anc', (4, (), ()), ('Anc', (1, (), ()), (2, (), ())))),
('Anc', (3, (), ()), ('Anc', ('Anc', (4, (), ()), (1, (), ())), (2, (), ()))),
('Anc', (3, (), ()), ('Anc', (1, (), ()), ('Anc', (4, (), ()), (2, (), ()))))
]

def add_leaf(new_leaf, tree):
"""Returns a list of all possible trees that result from
adding new_leaf to tree."""
root, left, right = tree
anc = "Anc"

Q

def add_leaf(new_leaf, tree):
"""Returns a list of all possible trees that result from
adding new_leaf to tree."""
root, left, right = tree
anc = "Anc"
if left == (): # a leaf.

new_tree = (anc, new_leaf, tree)
return [new_tree] # wrap it in a list!

S

1

2

3

4

General case: three steps at each node

1

2

3

4

1

2

3

4

1

4

3

2

1

4

3

2

1

2

4

3

outgroup left
(top)

right
(bottom)

add_leaf(new_leaf, tree)

def add_leaf(new_leaf, tree):
"""Returns a list of all possible trees that result from
adding new_leaf to tree."""
root, left, right = tree
anc = "Anc"
if left == (): # a leaf.

new_tree = (anc, new_leaf, tree)
return [new_tree] # wrap it in a list!

else:
output_trees = []

put new_leaf as outgroup
output_trees.append((anc, new_leaf, tree))

S

1

2

3

4

General case: three steps at each node

1

2

3

4

1

2

3

4

1

4

3

2

1

4

3

2

1

2

4

3

outgroup left
(top)

right
(bottom)

add_leaf(new_leaf, tree)

1

2

3

4

3

1

2

add_leaf(new_leaf, right)
3

4

1

2

3

4

The add_leaf chop shop: right tree

http://bananajams.wordpress.com/

1

2

3

4

3

1

2
add_leaf(new_leaf, left)

The add_leaf chop shop: left tree

http://bananajams.wordpress.com/

2
4
3

1

4
2
3

1

2
4
3

1

2
1

4

4
1

2

2
1

4

def add_leaf(new_leaf, tree):
"""Returns a list of all possible trees that result from
adding new_leaf to tree."""
root, left, right = tree
anc = "Anc"
if left == (): # a leaf.

new_tree = (anc, new_leaf, tree)
return [new_tree] # wrap it in a list!

else:
output_trees = []

put new_leaf as outgroup
output_trees.append((anc, new_leaf, tree))

QWorksheet

def add_leaf(new_leaf, tree):
"""Returns a list of all possible trees that result from
adding new_leaf to tree."""
root, left, right = tree
anc = "Anc"
if left == (): # a leaf.

new_tree = (anc, new_leaf, tree)
return [new_tree] # wrap it in a list!

else:
output_trees = []

put new_leaf as outgroup
output_trees.append((anc, new_leaf, tree))

recur to add new_leaf on branches of right subtree
temp_right_trees = add_leaf(new_leaf, right)
for temp_right_tree in temp_right_trees:

new_tree = (anc, left, temp_right_tree)
output_trees.append(new_tree)

SWorksheet

def add_leaf(new_leaf, tree):
"""Returns a list of all possible trees that result from
adding new_leaf to tree."""
root, left, right = tree
anc = "Anc"
if left == (): # a leaf.

new_tree = (anc, new_leaf, tree)
return [new_tree] # wrap it in a list!

else:
output_trees = []

put new_leaf as outgroup
output_trees.append((anc, new_leaf, tree))

recur to add new_leaf on branches of right subtree
temp_right_trees = add_leaf(new_leaf, right)
for temp_right_tree in temp_right_trees:

new_tree = (anc, left, temp_right_tree)
output_trees.append(new_tree)

recur to add new_leaf on branches of left subtree
temp_left_trees = add_leaf(new_leaf, left)
for temp_left_tree in temp_left_trees:

new_tree = (anc, temp_left_tree, right)
output_trees.append(new_tree)

return output_trees

SWorksheet

Demo!

(Bonus) homework problem:
all_trees

def all_trees(leaf_names):
"""Given a list of species, returns a list of all
possible tree topologies."""

>>> all_trees([1,2,3])
[
('Anc', (1, (), ()) , ('Anc', (2, (), ()), (3, (), ()))),
('Anc', ('Anc', (1, (), ()), (2, (), ())), (3, (), ())),
('Anc', (2, (), ()), ('Anc', (1, (), ()), (3, (), ())))
]

1

2

3

1

3

2

3

2

1

all_trees([4, 3, 2, 1])

all_trees([3, 2, 1]) all_trees([4, 3, 2, 1])

all_trees([3, 2, 1])

a
l
l
_
t
r
e
e
s
(
[
2
,

1
]
)

all_trees([4, 3, 2, 1])

1

all_trees([3, 2, 1])

a
l
l
_
t
r
e
e
s
(
[
2
,

1
]
)

a
l
l
_
t
r
e
e
s
(
[
1
]
)

all_trees([4, 3, 2, 1])

2

11

all_trees([3, 2, 1])

a
l
l
_
t
r
e
e
s
(
[
2
,

1
]
)

a
l
l
_
t
r
e
e
s
(
[
1
]
)

all_trees([4, 3, 2, 1])

2

1

1

2

3

1

3

2

1

2

3

1

all_trees([3, 2, 1])

a
l
l
_
t
r
e
e
s
(
[
2
,

1
]
)

a
l
l
_
t
r
e
e
s
(
[
1
]
)

all_trees([4, 3, 2, 1])

2

1

1

2

3

1

3

2

1

2

3

1

2

3

4

1

2

3

4

1

2

4

1

4

3

2

1

4

3

23

1

3

2

4

1

3

4

1

4

2

3

1

4

2

32

1

3

2

4

4

1

3

2

1

4

3

2

1

4

3

2

1

2

3

4

1

2

3

4

1

all_trees([3, 2, 1])

a
l
l
_
t
r
e
e
s
(
[
2
,

1
]
)

a
l
l
_
t
r
e
e
s
(
[
1
]
)

all_trees([4, 3, 2, 1])

One general strategy
for inferring phylogenies

● Generate all possible trees
● Pick the most parsimonious given some data

The number of trees grows quickly…

species
(leaves)

1 5 10 15 20 25

possible
trees

1 105 34,459,425 2.13458 x 10^14 8.200795 x 10^21 1.192568 x 10^30

Programming motifs: all vs. all
protsA = ['PLLYK', 'QSTE', 'NITQIVG', 'INE', 'QVAEA', 'YMSA']
protsB = ['LAGADLEQ', 'LAL', 'EAMERY', 'ENLEL']

B1 B2 B3 B4

A1

A2

A3

A4

A5

A6

d = {}
for pA in protsA:

for pB in protsB:
d[(pA,pB)] = memoAlignScore(pA, pB, -9, blosum62, {})

Programming motifs:
running the gauntlet

rnas = ['AUGACGCAGUAGUCA', 'UAGACAGUA', 'AGGUACAUC'...]

• If no RNA has a fold score above 7, return False
• Otherwise return True

for rna in rnas:
if fold(rna) > 7:

return True
return False

Programming motifs:
finding extremz

def z(input):
'''Count z's in a string'''
counter = 0
for symbol in input:

if symbol == 'z':
counter = counter + 1

return counter

dictionary = [
"abdomen",
"abdominal",
"abduct",
"abduction,"
"aberration,"
"abet,"
"abhor,"
"abhorrence,"
"abhorrent,"
"abide,"
"abiding,"
"ability,"
"abject,"
"ablaze,"
…
…
etc.
…
…]

def extremz(words):
'''Find and return the word with the most z's'''
best_count = 0
best_word = ""
for word in words:

count = z(word)
if count > best_count:

best_count = count
best_word = word

return best_word

Recursion on trees: graft
groodies = ("Q",

("R", (), ()),
("S",

("T", (), ()),
("U", (), ())

)
)

utree = ("U",
("V", (), ()),
("W", (), ())

)

>>> graft(groodies, utree)
('Q', ('R', (), ()), ('S', ('T', (), ()), ('U', ('V', (), ()), ('W', (), ()))))

>>> graft(groodies, ('X',(),()))
('Q', ('R', (), ()), ('S', ('T', (), ()), ('U', (), ())))

primary tree graft tree

• At most one leaf of primary_tree has the same name as the root of graft_tree.
• If there is one such match, the function returns a new tree that is identical to primary_tree but with

that leaf in primary_tree replaced by the entire graft_tree.
• If there is no leaf in primary_tree that matches the name of the root of graft_tree, the function

simply returns primary_tree.
• No internal node of the primary_tree will have a name that matches the root of the graft_tree.

def graft(primary_tree, graft_tree):
"""If primary_tree has a leaf whose name is the same as the root of

graft_tree then we return a new tree identical to primary_tree
except with that leaf replaced by graft_tree. Otherwise, we
just return primary_tree."""

Try not to use any helper functions on this one!

Q

def graft(primary_tree, graft_tree):
"""If primary_tree has a leaf whose name is the same as the root of

graft_tree then we return a new tree identical to primary_tree
except with that leaf replaced by graft_tree. Otherwise, we
just return primary_tree."""

root, left, right = primary_tree
if root == graft_tree[0]:

return graft_tree

elif left == ():
return primary_tree

else:
left_graft = graft(left, graft_tree)
right_graft = graft(right, graft_tree)
return (root, left_graft, right_graft)

Try not to use any helper functions on this one!

S

Reminder:
• Lecture feedback form

(https://forms.gle/aPmkpXDUTp4Xo4CV7)

https://forms.gle/aPmkpXDUTp4Xo4CV7

