(

| wonder about Trees” —Robert Frost

Arctic fox
Kit fox
Corsac fox
Ruppell's fox J "‘)

Red fox " 124

Coere YT We wonder about Robert Frost” - Trees
Blanford's fox —_—

Fennec fox =
Raccoon dog ’
Bat-eared fox
Short-eared dog
Crab-eating fox

Sechuran fox

Culpeo fox #
Pampas fox
Chilla

Darwin's fox

Hoary fox

Maned wolf e
Bush dog \"’\
Side-striped jackal))

Black-backed jackal g
Golden jackal

Dog

Grey wolf

Coyote m
Ethiopian wolf e A
Dhole

=
African wild dog ’;m ;
¥

Grey fox

als

w \\

Island fox
100 Black bear
|1_0°|: Giant panda
|1_oo': Northern elephant seal
100 Walrus

F2

CS 5 Green

Learning Goals
» Describe the parsimony principle
* Introduce method for enumerating all trees

S w N -

Trees and the parsimony principle

1 A
2 A
37T

Data

CCAGT 4 T

GCACT

CCTGA

GCTGT 1A
2 A
37T

S w N -

Trees and the parsimony principle

Data

CCAGT
GCACT
CCTGA
GCTGT

€= “Better”, i.e. more parsimonious

Another general strategy
for inferring phylogenies

. Generate all possible trees
. Pick the most parsimonious given some data

Generating all possible trees
from the ground up

species (leaves) 1 2 3

possible trees 1 1 3

Draw all possible trees that result from adding a species 4 to this tree.

Draw all possible trees that result from adding a species 4 to this tree.

1 1 1
2 2 2
3 4 4
4 3 3

1 1

4 4

2 2

3 3

\) H_/ H_/ ~_

1 2 3

-_—

N

N

N

-_—

N

N

A convention for naming
internal/ancestral nodes

tree = ('"Anc', (1,0,0) , (Z2,0,0))

1
'Anc'’ <
2

The add leaf function

3 1 1 1
add leaf (new leaf, tree)

> 3 3

2 2 2

>>> leaf = (3, (), ())
>>> tree = ('Anc’', (1,(),()) +» (2,(0),()))
>>> add leaf(leaf, tree)

('Anc’, (3, (), ()) » ('Anc’, (1,),) (2, O)r ()))
('Anc’, ('Anc’, (3, (), O))s (1, O/, O (2, O)r ())
('Anc’, (1, (), ()), ('Anc’, (3, ()r ())s (2, s ()))

Which illustration does the last tuple tree correspond to?

) 1
) 1
) 1

The add leaf function

1 1
4 1
add leaf (new leaf, tree)
I 5 . 2 2
3 4
3
4 3 3

>>> leaf = (4, (), ())

>>> tree = ('Anc’, (3, (), ()) , ('Anc’, (1, (),))s (2, ()r O))))

>>> add_leaf(leaf, tree)

[
('Anc’, (4, (), ()), ('Anc’, (3, (), ()), ("Anc’, (1,)y ())r (2, O)r ()))
('Anc’, ('Anc’, (4, (), ())s (3,)y O))), (TARC’, (1, (O)y) (2, Of ()
('Anc’, (3, (), ()), ('Anc’, (4, (), ()), ("Anc’, (1,)y ())r (2, O)r ()))
('Anc’, (3, (), ()), ('Anc’, ('Anc’, (4, O, ())s (1, O O)))r (2, Of ()
('Anc’, (3, (), ()), ('Anc’, (1, (), ()), ("Anc’, (4,)y ())r (2, O)r ()))

]

N

N

&4

def add leaf (new leaf, tree):
"""Returns a list of all possible trees that result from

adding new leaf to tree."""
root, left, right = tree
anc = "Anc"

def add leaf (new leaf, tree):

"""Returns a list of all possible trees that result from
adding new leaf to tree."""
root, left, right = tree
anc = "Anc"
1f left == (): # a leaf.
new tree = (anc, new leaf, tree)
return [new tree] # wrap it in a list!

General case: three steps at each node

1 1 1 1 1
4 1
add leaf (new leaf, tree) 2 2 4
‘ 2 >
& ¢
3
4 3 3 3 3

\) \)\ J
Y Y '

outgroup right left
(bottom) (top)

N
N

N
N
N

def add leaf (new leaf, tree):
"""Returns a list of all possible trees that result from

adding new leaf to tree."""
root, left, right = tree

anc = "Anc"
1f left == (): # a leaf.
new tree = (anc, new leaf, tree)
return [new tree] # wrap it in a list!
else:

output trees = []

put new leaf as outgroup
output trees.append((anc, new leaf, tree))

General case: three steps at each node

1 1 1 1 1
4 1
add leaf (new leaf, tree) 2 2 4
‘ 2 >
& ¢
3
4 3 3 3 3

\) \)\ J
Y Y '

outgroup right left
(bottom) (top)

N
N

N
N
N

The add leaf chop shop: right tree

RN

4/7
—» add leaf (new leaf, right) —» <
3

RS
RNES
N

3

w

The add leaf chop shop: left tree

1
1 2
2 4

4
1 1 1
\ 1 < , "7 add_leaf (new_leaf, left) <2 -» éi
| < 2 < L&

def add leaf (new leaf, tree): Worksheet
"""Returns a list of all possible trees that result from

adding new leaf to tree."""
root, left, right = tree

anc = "Anc"
1f left == (): # a leaf.
new tree = (anc, new leaf, tree)
return [new tree] # wrap it in a list!
else:

output trees = []

put new leaf as outgroup
output trees.append((anc, new leaf, tree))

def add leaf (new leaf, tree): Worksheet
"""Returns a list of all possible trees that result from

adding new leaf to tree."""
root, left, right = tree

anc = "Anc"
1f left == (): # a leaf.
new tree = (anc, new leaf, tree)
return [new tree] # wrap 1t in a list!
else:

output trees = []

put new leaf as outgroup
output trees.append((anc, new leaf, tree))

recur to add new leaf on branches of right subtree
temp right trees = add leaf(new leaf, right)
for temp right tree 1in temp right trees:

new tree = (anc, left, temp right tree)

output trees.append(new tree)

def add leaf (new leaf, tree): Worksheet
"""Returns a list of all possible trees that result from

adding new leaf to tree."""
root, left, right = tree

anc = "Anc"
1f left == (): # a leaf.
new tree = (anc, new leaf, tree)
return [new tree] # wrap it in a list!
else:

output trees = []

put new leaf as outgroup
output trees.append((anc, new leaf, tree))

recur to add new leaf on branches of right subtree
temp right trees = add leaf(new leaf, right)
for temp right tree 1in temp right trees:

new tree = (anc, left, temp right tree)

output trees.append(new tree)

recur to add new leaf on branches of left subtree
temp left trees = add leaf (new leaf, left)
for Eemp_Ieft_tree in temp left trees:

new tree = (anc, temp left tree, right)

output trees.append(new tree)

return output trees

Demo!

(Bonus) homework problem:
all trees

all trees(leaf names):
"""Given a list of species, returns a list of all
possible tree topologies."""

>>> all trees([1,2,3])

[
(‘Anc’', (1, (), ()) + ("Anc'y, (2, O)sr))r (37 Or ())))y
('Anc’', ('Anc’', (1,)y, O))s (2, O)r O)))s (3, s)))s
(‘Anc’', (2, ()s (), ("Anc’', (1, O)r O))sr (3, O)r ())))

]

all trees([4,

all trees([3,

2,

11)

«—

all trees([4,

—~
L |

—

all trees([2,

all trees([3,

2y

11)

«—

all trees([4,

/

all trees([4,

all trees([3,

([T

‘7])so213 TT®

([T])se2x1 TT®

all trees([4,

all trees([3,

([T

‘7])so213 TT®

([T])se2x1 TT®

all trees([4,

all trees([3,

([T

‘7])so213 TT®

([T])se2x1 TT®

all trees([1])

\

all trees([2,

—~

L |

—

all trees([3,

«—

all trees([4,

—_—

N

—_—

\

N

N

N

—_—

N

w

1

1

w

N

—_—

N

SN

w

One general strategy
for inferring phylogenies

. Generate all possible trees
. Pick the most parsimonious given some data

The number of trees grows quickly...

species 5 10 15 20 25
(leaves)
possible 105 | 34,459,425 |2.13458 x 10714 | 8.200795 x 10721 | 1.192568 x 10730

trees

Programming motifs: all vs. all

['PLLYK', 'QSTE', 'NITQIVG', 'INE', 'QVAEA', 'YMSA']
['LAGADLEQ', 'LAL', 'EAMERY', 'ENLEL']

ProtsA
protsB

Bl B2 B3 B4

Al
A2
A3
A4
A5
Ab

d = {}
for pA in protsA:
for pB in protsB:
d[(pA,pB)] = memoAlignScore(pA, pB, -9, blosumé62, {})

Programming motifs:
running the gauntlet

rnas = ['AUGACGCAGUAGUCA', 'UAGACAGUA', 'AGGUACAUC'...]

If no RNA has a fold score above 7, return False
Otherwise return True

rna rnass:

fold(rna) > 7:
True

False

Programming motifs:
finding extremz

dictionary = [
"abdomen",
"abdominal", z (input) :
"abduct", "'"Count z's in a string'''
"abduction, " counter = 0
"aberration, " symbol input:
"abet, " symbol == 'z":
"abhor, " counter = counter + 1
"abhorrence, " counter
"abhorrent,"
"ab%d?’" extremz (words) :
"ab}d%ng," '"'"Find and return the word with the most z's'''
"ability,"
"o " best count = 0
abject, —
"ablaze, " best word = ""
word words:
count = z (word)
etc. count > best count:
best count = count

] best word = word
best word

Recursion on trees: graft

groodies = ("Q", utree = ("U",
("R", O,), ("v', O, 0),
("s", ("w", O,)
(", O, 0),)
("o, O, 0)

primary tree graft tree
\ /
>>> graft(groodies, utree)
(‘e', (‘'R', O, O), ¢s', ¢T', O, O), o', ('V', O, O), ("W, (O, 0O))))

>>> graft(groodies, ('X', (), ()))
(re', ('R', O, O), Cs', (T, O, O), (""", O, 0O)))

* At most one leaf of primary tree hasthe same name as theroot of graft tree.

* If there is one such match, the function returns a new tree that is identical to primary tree but with
that leaf in primary tree replaced by the entire graft tree.

* Ifthereisnoleafin primary tree that matchesthe name of the root of graft tree, the function
simply returns primary tree.

* Nointernal node of the primary tree will have a name that matches the root of the graft tree.

def graft(primary tree, graft tree):

"""Tf primary tree has a leaf whose name is the same as the root of
graft tree then we return a new tree identical to primary tree
except with that leaf replaced by graft tree. Otherwise, we
just return primary tree."""

Try not to use any helper functions on this one!

def graft(primary tree, graft tree):

"""Tf primary tree has a leaf whose name is the same as the root of
graft tree then we return a new tree identical to primary tree
except with that leaf replaced by graft tree. Otherwise, we
just return primary tree."""

root, left, right = primary tree
1f root == graft tree[0]:
return graft tree

elif left == ():
return primary tree

else:
left graft = graft(left, graft tree)
right graft = graft(right, graft tree)
return (root, left graft, right graft)

Try not to use any helper functions on this one!

Reminder:

* | ecture feedback form
(https://forms.gle/aPmkpXDUTp4Xo4CV7)

https://forms.gle/aPmkpXDUTp4Xo4CV7

