CS 5 Green Today

News Briefs

cs prof. writes Python - Students Object to Classes. “They

code that produces

Nissan Leafs. serve no function and we disagree with

(“Leaves?” p. 42)

the methods,” say students.

(Claremont, AP): Students in CS 5 say that they object to classes.
“We're overloaded!” said one student, “and we want to underscore
underscore our concerns.” Another student spokesperson said “The
professors are def __init__ely hoping this is something that will just
float away, but they can'’t string us along forever. We have a long list
of issues and if the profs don’t understand them, they should look
them up in a dictionary,” said a student. “We sure wish the students
were mutable!” said one professor. Students and professors
eventually agreed on a tuple of ways to __repr__ their relationship.

S

CS 5 Green

Learning Goals
» Explain Markov models for simulation
* Practice classes

HW: Markov text generation

1st order

Training text
| like cookies. | like spam. | am happy. Spam is good.

Learning phase

Starters [("I"I)I ("I"I)I ("I"l)l ("Spam"/)]

Dictionary:

{

"I",): ["like", "like", "am"],
"like",): ["cookies.", "spam."],
"cookies.",): ["I"],
"spam.",): ["I"],
"am",): ["happy."],

(
(
(
(
(
("happy.",): ["Spam"],

HW: Markov text generation

2"d order

Training text
| like cookies. | like spam. | am happy. Spam is very good.

Learning phase

Starters: [
("I", "like") , ("I", "like") ,
("I", "am") , ("Spam", "iS")
]
Dictionary:
{
("1", "like"): ["cookies.", "spam."],
("I", "am") : ["happy. ":I ,
("iS", "veryu) . ["gOOd."],
}

Demo

Markov models in biology

Gene finding

Nucleotide substitution models
Sequence similarity search
Modeling animal behavior

Markov models in Bio 52...

Cholera comparative genomics

600 Lengths of ecoli coding and noncoding ORFs

500
400
300
200

l

0 500 1000 1500 2000

AAAAAA: 0.048 AAAAAC: 0.021 AAAAAG: 0.013 AAAAAT: 0.019...
AACAAA: 0.029 AACAAC: 0.021 AACAAG: 0.023 AACAAT: 0.031...
AAGAAA: 0.057 AAGAAC: 0.017 AAGAAG: 0.033 AAGAAT: 0.020...
AATAAA: 0.049 AATAAC: 0.0l16 AATAAG: 0.0l16 AATAAT: 0.034...
ACAAAA: 0.022 ACAAAC: 0.015 ACAAAG: 0.011 ACAAAT: 0.033...

Probabilistic gene finder using a 15t order model on codons

An Ant Class

from Vector 1mport *

Hey, draw me a picture of
Abe and Bess!

class Ant:

def 1nit (self, pos):

self.position

def moveTowards (s

(100, 0)!? That’s practically

in the Dutch Ant-illes!

>>> abes position Vector (0, O)NﬁéAloe
>>> abe = Ant (abes position) \

>>> bess = Ant (Vector (100, 0))

I’'m feeling strong ant-ipathy
for ant puns!
>>> abe.moveTowards (bess) P

% Bess

bess

cziggy

abe = Ant(Vector (0, 0))

bess = Ant(Vector (0, 100))
cziggy = Ant(Vector (100, 100))
dizzy = Ant(Vector (100, 0))

while True:
abe.moveTowards (bess)
bess.moveTowards (cziggy)
cziggy.moveTowards (dizzy)
dizzy.moveTowards (abe)

variable n number of ants!

The Adv%age of Abstraction

VVOorm-and-sector: eer-ny-wirer

*

Abstraction in CS

>>> x = [] >>> x = list ()
>>> x.append (42) >>> x.append (42)
>>> X >>> x. repr ()
[42] [42]
>>> x[0] >>> x. getitem (0)
42 42
>>> x[0] = 67 >>> x. setitem (0, 67)
list:

__1nit (self):

append (self, item):

__repr (self):

_getitem (self, index):

_setitem (self, index, value):

Oops (object-orianted programs) example 1:
simulating a population of RNA organisms

an RNA ‘organism’ AGAAAAACAA

Fitness (probability of reproducing) depends on number of
secondary structure pairing interactions.

Selection and reproduction over a
series of generations

Generation 1 Generation 2
% AACAAAAAAU
AAAAAAAAAA W, AAAAAAAAAU

AUARRARRAA / T pusanaanAR
AAAL AUAAAAAA
AAAAdj AAAAA/iAAAU AG ’
RAARRRAA Ty AARARIAE P40,

« 1/3 of sequences with most « Sample with replacement to
pairing interactions selected obtain parent sequences
to form “breeding population” * Replicate these with mutation

to form next generation

Basic simulator function

sim(seq len, pop size, num gens):

"""Evolve RNA strings over num gens generations."""

get initial population

pop = 1nitial pop(pop size, seq len)

print ('Initial population fitness', mean fitness (pop))

evolve...

i range (num gens) :

pop = next_gen(popd

print mean fitness of final population

print ('Final population fitness', mean fitness (pop))

pop.sort (reverse=True)

pop

Getting the next generation

random pop is a list of objects

of type rnaOrg
next gen (pop) :
"""Given a population, find most fit 1/3
and use these to reproduce next generation."""
find most fit 1/3
pop.sort (reverse=True) # sort high to low
breed = popl[:int (len (pop)/3)]

for this to work,
class rnaOrg must
have eq and
1t methods

breed —
new_pop = []

i range (len (pop)) :

parent = random.choice (breed)

new pop.append (parent.replicate (
«-~,\§§§‘\.and:bnaOrgrnust
have replicate

method

new pop

class rnaOrg:

def

def

def

def

def

def

__1nit (self,seq):

"""An RNA organism."™"
self.seq = seq

get fitness(self):
"""Return total number

__repr (self):

__eqg (self, other):

""rnReturn True 1f this

1t (self, other):

""rReturn True 1f this

Name: Worksheet

* How should this class represent fithess?
 Assume mfold5(seq, {}) is available

mwiw

of pairing interactions in our sequence.

organism is equally fit as other organism."""

organism is less fit than other organism."""

replicate (self): (stretch goal)
"""Create a new organism with a potentially mutated genome.”™""

« Assume you can use random

« Compute probability, then
mutate if p < MUTPROB

class rnaOrg:

def

def

def

def

def

def

__1nit (self,seq):

"""An RNA organism."""
self.seq = seq
self.fitness = self.get fitness()

get fitness(self):
"""Return total number of pairing interactions in our sequence."""
return mfold5 (self.seq, {})

__repr (self):

return str(self.fitness) + " " + self.seqg

__eqg (self, other):

"""Return True if this organism is equally fit as other organism."""
return self.fitness == other.fitness

1t (self, other):

"""Return True if this organism is less fit than other organism."""
return self.fitness < other.fitness

replicate (self) :
"""Create a new organism with a potentially mutated genome.”™""
new seq = []
for base in self.seq:
1f random.random() < MUTPROB:
new seq.append(random.choice (['A"','U',"'C",'G"]))
else:
new sed.append (base)
return rnaOrg("".join(new seq))

Demo

o

Oops example 2: dates

>>> today = Date(l1l, 16, 2021)
>>> due = Date (11, 20, 2021)

>>> due — today
LYZQfEiiEEatredlrﬂnusr?}

O 3
*
/Eﬁass Date: ﬁ\\

def init (self,
day, month, vyear):

N /

Oops example 2: dates * 9

>>> today = Date(l1l, 16, 2021)
>>> due = Date (11, 20, 2021)
>>> due — today
D

due. sub (today) }

/Eﬁass Date: ﬁ\\

def init (self,

day, month, year):

def sub (self, other):

\\\ blah, blah, blah ,//

Oops example 2: dates

>>> today = Date(ll, 1o, 2021)
>>> due = Date (11, 20, 2021)
>>> 1f due > today:

print ("let's watch a moviel!")

due. gt (today) }

N\
N\

q

One implemantation

class Date:

def 1init (self, m, d, {):
self.month

self.day =

self.year

def sub (self, | othdr) :

def gt (self, othe#):

>>> d = Date(1l1l, 16, 2021)

Another implemantation...

Date:
__1nit (self, m, d, y):
self.days since JanFirstl900 = funky math here!

Why would any sane person want
to store the date as the number of
days since January 1, 1900?

__sub_(self, other):

gt (self, other):

o
~\

>>> d = Date(1l1l, 16, 2021)

Converting in and out of
an internal representation

Date:
__i1nit (self, m, d, y):
self.days since JanFirstl1900 = \
self.get days since 1900 (m, d, vy)

def get days since 1900 (self, m, d, y):
funky math here

def get month day year (self):
funky math 1n reverse here

>>> d = Date(1l1l, 16, 2021)

>>> d.get month day year ()
(11, 16, 2021)

Date “Abstraction”

Date
~ 1nit (self, month, day, year)
get days since 1900 (self, m, d, V)
get month day year (self)

_— >’ <’ >:’ <:’ —I—’ —

4

A final oops example: protein protein
interaction networks

=
°®

P

Some input data

[

edges
gene4d4634,gene?2b42),
geneZ2351,gene3807),
gene207,gene2331),
gene2180, gened4867),

A~ A~ A~~~

(gened224,gene2073),
(gened128,genel902),
(gene785,gene4093),

(gene3879,genel’’34),
(gened906,gene?2255),

]

o

is_connected

def 1s connected(genel, gene2, edges):
"""Return True if genel and gene2?2 are connected in edges."""

is_connected

def 1s connected(genel, gene2, edges):
"""Return True if genel and gene2?2 are connected in edges."""

for geneA, geneB 1in edges:

1f geneA == genel and geneB == geneZ:
return True
elif geneA == geneZ2 and geneB == genel:

return True

return False

What if the network is really big and
we have a lot of queries?

def query edges (gedges, edges):
"""TLook for gedges in edges. Return list of those present.”"""
present = []
for gl,g2 1in gedges:
1f 1s connected(gl, g2, edges)
present.append((gl, g2))
return present

e technical term iIs hairball.

A cancer related protein

protein interaction network Demo

https://openi.nim.nih.gov/detailedresult.php?img=PMC3224234 1752-0509-5-158-2&req=4

A network class

Network:

__init_ (self, edges):
"""Protein-protein interaction network.

self.adj list = {} « adj listisan attribute
that stores the network
genea, geneb edges: keys are genes (proteins)

self.add edge(geneh, geneB) * values are list of other

genes a given gene is

add edge(self, geneA, geneB): connected to

"""Add edge to network."""
geneA self.adj list:
self.adj list[geneA] = []
self.adj list[geneA].append(geneB)

geneB self.adj list:
self.adj list[geneB] = []
self.adj list[geneB].append(genel)

Write an is connected method for this Network class.

def 1s connected(self, genel, gene2):
"""Return True i1f genel and geneZ are connected."""

Write an is connected method for this Network class.

def 1s connected(self, genel, gene2):
"""Return True 1f genel and geneZ2 are connected."""
1f genel 1in self.adj list:
1f gene2 1n self.adj list[genel]:
return True

return False

Try the network version out...

query edges network (gedges, network) :
"""T,ook for gedges in edges. Return list of those present."""
present = []
qgl, g2 gedges:
network.is connected(gl,g2):
present.append((gl, g2))
present

>>> network = Network(edges)
>>> query edges network(query edges, network)

Demo

See you next time...

ARRRRARK

