
CS 5 Green Today
Students Object to Classes. “They
serve no function and we disagree with
the methods,” say students.
(Claremont, AP): Students in CS 5 say that they object to classes.
“We’re overloaded!” said one student, “and we want to underscore
underscore our concerns.” Another student spokesperson said “The
professors are def __init__ely hoping this is something that will just
float away, but they can’t string us along forever. We have a long list
of issues and if the profs don’t understand them, they should look
them up in a dictionary,” said a student. “We sure wish the students
were mutable!” said one professor. Students and professors
eventually agreed on a tuple of ways to __repr__ their relationship.

News Briefs
CS Prof. writes Python
code that produces
Nissan Leafs.
(“Leaves?” p. 42)

Learning Goals
• Explain Markov models for simulation
• Practice classes

HW: Markov text generation
1st order

Training text
I like cookies. I like spam. I am happy. Spam is good.

Learning phase
Starters: [("I",), ("I",), ("I",), ("Spam",)]
Dictionary:

{
("I",): ["like", "like", "am"],
("like",): ["cookies.", "spam."],
("cookies.",): ["I"],
("spam.",): ["I"],
("am",): ["happy."],
("happy.",): ["Spam"],
...

}

HW: Markov text generation
2nd order

Training text
I like cookies. I like spam. I am happy. Spam is very good.

Learning phase
Starters: [

("I", "like"), ("I", "like"),
("I", "am"), ("Spam", "is")

]
Dictionary:

{
("I", "like"): ["cookies.", "spam."],
("I", "am"): ["happy."],
("is", "very"): ["good."],
...

}

Demo

Markov models in biology

• Gene finding
• Nucleotide substitution models
• Sequence similarity search
• Modeling animal behavior

Markov models in Bio 52…
Cholera comparative genomics

AAAAAA: 0.048 AAAAAC: 0.021 AAAAAG: 0.013 AAAAAT: 0.019...
AACAAA: 0.029 AACAAC: 0.021 AACAAG: 0.023 AACAAT: 0.031...
AAGAAA: 0.057 AAGAAC: 0.017 AAGAAG: 0.033 AAGAAT: 0.020...
AATAAA: 0.049 AATAAC: 0.016 AATAAG: 0.016 AATAAT: 0.034...
ACAAAA: 0.022 ACAAAC: 0.015 ACAAAG: 0.011 ACAAAT: 0.033...
...

Probabilistic gene finder using a 1st order model on codons

An Ant Class
from Vector import *

class Ant:
def __init__(self, pos):

self.position = pos

def moveTowards(self, other):

>>> abes_position = Vector(0, 0)
>>> abe = Ant(abes_position)
>>> bess = Ant(Vector(100, 0))
>>> abe.moveTowards(bess)

(100, 0)!? That’s practically
in the Dutch Ant-illes!

I’m feeling strong ant-ipathy
for ant puns!

Abe

Bess

Hey, draw me a picture of
Abe and Bess!

abe

bess

abe = Ant(Vector(0, 0))
bess = Ant(Vector(0, 100))
cziggy = Ant(Vector(100, 100))
dizzy = Ant(Vector(100, 0))

while True:
abe.moveTowards(bess)
bess.moveTowards(cziggy)
cziggy.moveTowards(dizzy)
dizzy.moveTowards(abe)

cziggy

dizzy
Ugh! What if there were
1000 ants, or even some
variable n number of ants!

The Adv age of Abstraction

Rack-and-pinion? Recirculating ball?
Worm-and-sector? Steer-by-wire?

Abstraction in CS

>>> x = []
>>> x.append(42)
>>> x
[42]
>>> x[0]
42
>>> x[0] = 67

>>> x = list()
>>> x.append(42)
>>> x.__repr__()
[42]
>>> x.__getitem__(0)
42
>>> x.__setitem__(0, 67)

class list:
def __init__(self):
def append(self, item):
def __repr__(self):
def __getitem__(self, index):
def __setitem__(self, index, value):

Oops (object-orianted programs) example 1:
simulating a population of RNA organisms

an RNA ‘organism’ AGAAAAACAA

Fitness (probability of reproducing) depends on number of
secondary structure pairing interactions.

Selection and reproduction over a
series of generations

AAAAAAAAAA

AAAAAAAAAU

AUAAAAAAAA

AAAAAAAAAA

• 1/3 of sequences with most
pairing interactions selected
to form “breeding population”

AAAAAAAAAA

AAAAAAAAAA

AUAAAAAAAA

AAAAAAAAAU

AACAAAAAAU

AAAAAAAAAU

AUAAAAAAAA

AUAAAAAAAG

AUAAAAAAAU
AUAAAAAAAA

• Sample with replacement to
obtain parent sequences

• Replicate these with mutation
to form next generation

Generation 1 Generation 2

Basic simulator function
def sim(seq_len, pop_size, num_gens):

"""Evolve RNA strings over num_gens generations."""

get initial population
pop = initial_pop(pop_size, seq_len)
print('Initial population fitness', mean_fitness(pop))

evolve...
for i in range(num_gens):

pop = next_gen(pop)

print mean fitness of final population
print('Final population fitness', mean_fitness(pop))

pop.sort(reverse=True)
return pop

import random

def next_gen(pop):
"""Given a population, find most fit 1/3
and use these to reproduce next generation."""
find most fit 1/3
pop.sort(reverse=True) # sort high to low
breed = pop[:int(len(pop)/3)]

breed
new_pop = []
for i in range(len(pop)):

parent = random.choice(breed)
new_pop.append(parent.replicate())

return new_pop

Getting the next generation

for this to work,
class rnaOrg must
have __eq__ and
__lt__ methods

pop is a list of objects
of type rnaOrg

and rnaOrg must
have replicate
method

class rnaOrg:

def __init__(self,seq):
"""An RNA organism."""
self.seq = seq

def get_fitness(self):
"""Return total number of pairing interactions in our sequence."""

def __repr__(self):

def __eq__(self, other):
"""Return True if this organism is equally fit as other organism."""

def __lt__(self, other):
"""Return True if this organism is less fit than other organism."""

def replicate(self):
"""Create a new organism with a potentially mutated genome."""

Q
• How should this class represent fitness?
• Assume mfold5(seq,{}) is available

Worksheet

• Assume you can use random
• Compute probability, then

mutate if p < MUTPROB

(stretch goal)

Name:

class rnaOrg:

def __init__(self,seq):
"""An RNA organism."""
self.seq = seq
self.fitness = self.get_fitness()

def get_fitness(self):
"""Return total number of pairing interactions in our sequence."""
return mfold5(self.seq, {})

def __repr__(self):
return str(self.fitness) + " " + self.seq

def __eq__(self, other):
"""Return True if this organism is equally fit as other organism."""
return self.fitness == other.fitness

def __lt__(self, other):
"""Return True if this organism is less fit than other organism."""
return self.fitness < other.fitness

def replicate(self):
"""Create a new organism with a potentially mutated genome."""
new_seq = []
for base in self.seq:

if random.random() < MUTPROB:
new_seq.append(random.choice(['A','U','C','G']))

else:
new_seq.append(base)

return rnaOrg("".join(new_seq)) Demo

S

Oops example 2: dates

>>> today = Date(11, 16, 2021)
>>> due = Date(11, 20, 2021)

>>> due – today

5
What is that red minus!?

class Date:

def __init__(self,
day, month, year):

Q

due.__sub__(today)

class Date:

def __init__(self,
day, month, year):

def __sub__(self, other):
blah, blah, blah

Oops example 2: dates

>>> today = Date(11, 16, 2021)
>>> due = Date(11, 20, 2021)

>>> due – today

5

S

due.__gt__(today)

>>> today = Date(11, 16, 2021)

>>> due = Date(11, 20, 2021)
>>> if due > today:

print("let's watch a movie!")

Oops example 2: dates

One implemantation

class Date:

def __init__(self, m, d, y):

self.month = m

self.day = d

self.year = y

def __sub__(self, other):

def __gt__(self, other):

>>> d = Date(11, 16, 2021)

Another implemantation…
class Date:

def __init__(self, m, d, y):
self.days_since_JanFirst1900 = funky math here!

def __sub__(self, other):

def __gt__(self, other):

>>> d = Date(11, 16, 2021)

Why would any sane person want
to store the date as the number of
days since January 1, 1900?

Converting in and out of
an internal representation

class Date:
def __init__(self, m, d, y):

self.days_since_JanFirst1900 = \
self.get_days_since_1900(m, d, y)

def get_days_since_1900(self, m, d, y):
funky math here

def get_month_day_year(self):
funky math in reverse here

>>> d = Date(11, 16, 2021)
>>> d.get_month_day_year ()
(11, 16, 2021)

Date “Abstraction”
Date

__init__(self, month, day, year)

get_days_since_1900(self, m, d, y)

get_month_day_year(self)

==, >, <, >=, <=, +, -

A final oops example: protein protein
interaction networks

PATP ADP

Some input data
edges = [

(gene4634,gene2542),
(gene2351,gene3807),
(gene207,gene2331),
(gene2180,gene4867),
.
.
.
(gene4224,gene2073),
(gene4128,gene1902),
(gene785,gene4093),
(gene3879,gene1734),
(gene4906,gene2255),

]

is_connected

def is_connected(gene1, gene2, edges):
"""Return True if gene1 and gene2 are connected in edges."""

Q

is_connected

def is_connected(gene1, gene2, edges):
"""Return True if gene1 and gene2 are connected in edges."""

for geneA, geneB in edges:
if geneA == gene1 and geneB == gene2:

return True
elif geneA == gene2 and geneB == gene1:

return True

return False

S

What if the network is really big and
we have a lot of queries?

def query_edges(qedges, edges):
"""Look for qedges in edges. Return list of those present."""
present = []
for q1,q2 in qedges:

if is_connected(q1, q2, edges):
present.append((q1,q2))

return present

A cancer related protein
protein interaction network Demo

https://openi.nlm.nih.gov/detailedresult.php?img=PMC3224234_1752-0509-5-158-2&req=4

The technical term is hairball.

A network class
class Network:

def __init__(self, edges):
"""Protein-protein interaction network."""

self.adj_list = {}

for geneA, geneB in edges:
self.add_edge(geneA, geneB)

def add_edge(self, geneA, geneB):
"""Add edge to network."""
if geneA not in self.adj_list:

self.adj_list[geneA] = []
self.adj_list[geneA].append(geneB)

if geneB not in self.adj_list:
self.adj_list[geneB] = []

self.adj_list[geneB].append(geneA)

adj_list is an attribute
that stores the network
• keys are genes (proteins)
• values are list of other

genes a given gene is
connected to

def is_connected(self, gene1, gene2):
"""Return True if gene1 and gene2 are connected."""

Write an is_connected method for this Network class.
Q

def is_connected(self, gene1, gene2):
"""Return True if gene1 and gene2 are connected."""
if gene1 in self.adj_list:

if gene2 in self.adj_list[gene1]:
return True

return False

Write an is_connected method for this Network class.
S

Demo

Try the network version out…

def query_edges_network(qedges, network):
"""Look for qedges in edges. Return list of those present."""
present = []
for q1,q2 in qedges:

if network.is_connected(q1,q2):
present.append((q1,q2))

return present

>>> network = Network(edges)
>>> query_edges_network(query_edges, network)

See you next time…

