Projects

Milestone on 11:59 PM on Friday, December 3

$$
\text { Final project is due by } 5 \text { PM on Friday, December } 10
$$

Milestone - 60 pts
Final - 90 pts
Grading:
20\% design
60\% functionality
20\% "documentation"
Pairs ok.
Project options:
. Keeping the Strains Straight
. Finding the Best Regulatory Network

- The Evolution of Picobot

What's coming next...

- After break
-11/30, 12/2 and 12/7 lecture in BECKMAN B126 (big Beckman)
-Class material: The limits of computation!
-12/9 we're back "home" in Shan 2460 for a final lecture
-Work on your project (milestone + final project)
-Labs are just for working and getting help on projects (will be at normal time and place with the three of us)

Keeping the strains straight

Question: is this the strain we think it is?

We could sequence the entire genome to check.
Disadvantage: expense

Strains were sequenced by the Broad center

etc.

Alternative: use PCR to amplify diagnostic regions of a strain's genome
 the strains

PCR in a nutshell

Cycle $1 \quad$ Cycle 1

Cycle 2
Cycle 2

Cycle 3

Cycle 3
>>> from ecolil0 import *
>>> seqs10L[4]
(
ATGACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGGATACAGATGC... ATGACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGGATACAGATGC... ATGACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGGATACAGATGC... ATGACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGGATACAGATGC... ATGACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGGATACAGATGC ATGACACAATTCGСТТСТССТGTTСтGCACTCGTTGCTGGATACAGATGC..., ATGACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGGATACAGATGC. ATGACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGGATACAGATGC. . . ATGACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGGATACAGATGC... ATGACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGGATACAGATGC... ATGACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGGATACAGATGC...)
>>> seqs10L[5]
1
TTGCAACCAGCGTTGTCAGGGAACTTATCAACACAACAGGTGATTATGCG...
---ATGCG...,
 --GTGATTATGCG... --GTGATTATGCG..., ---ATGCG... , ---ATGCG...,
 --ATGCG...,)

Where to put primers

Primers themselves should bind in regions where all strains identical.

Amplicons: picking pairs of primers

- Primer pairs should make amplicons (200-500 bp long)
- What makes one amplicon better than another?
CAG
TGG
ACG
CTG

An example amplicon from 4 strains.

Minimum pairwise difference: 1

A bigger minimum pairwise difference is better.

Computational ideas used here...

- Breaking a larger problem into smaller easy-to-solve parts
- Optimization in a large space of possibilities
- Opportunity to develop an algorithm

Steps...

- Find places primers could bind
- Find pairs of primers which make good amplicons
- Two data sets:
- 10 strain
- 88 strain

Biological ideas used here...

- Problem solving with genomic data
- Opportunity to solve a real biological problem

Genes...

Project Choice 2
(Chapter 13 in our book!)

Gene Regulatory Networks and the Maximum Likelihood Method

This project was adapted from materials
generously provided by Professor Russell Schwartz,
Department of Biological Sciences and
Lane Center for Computational Biology,
Carnegie Mellon University

- We know how to find genes!
- Some genes produce proteins that in turn promote or inhibit the production of other genes!
- Those interactions generally depend on the conditions in the cell, e.g., the concentrations of other substances.
- Yeast activates genes that convert sugar to alcohol, depending on concentration of sugar.
- Therapies for fighting disease by altering regulation of certain genes.
- Some genes encode transcription factors that promote or inhibit the expression of other genes
- Purple is highly expressed, green is not expressed

conditions

Courtesy of Prof. Russell Schwartz
Intuition Behind Network Inference

conditions

(4)
correlated expression implies common regulation

that intuition still leaves a lot of ambiguity

Assuming a Binary Input Matrix

- We will assume that genes only have two possible states: 0 (off) or 1 (on)
conditions

gene 1	1	1	0	0	1	1	1	0
gene 2	0	1	0	1	1	1	1	0
gene 3	0	0	1	0	0	0	0	1
gene 4	0	0	0	0	0	1	0	1

- We will also assume that we want to find directionality but not strength of regulatory interactions
- We will exclude the possibility of regulatory cycles:

Courtesy of Prof. Russell Schwartz
What is the Probability of a Microarray?

- We can describe the probability of a microarray as the product of the probabilities of all of its individual measurements:
$\operatorname{Pr}\left\{\begin{array}{|l|l|l|l|l|l|l|l|}\hline 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ \hline\end{array}\right.$
$\operatorname{Pr}\{1\} \times \operatorname{Pr}\{1\} \times \operatorname{Pr}\{0\} \times \operatorname{Pr}\{0\} \times \operatorname{Pr}\{1\} \mathrm{x}$
$\operatorname{Pr}\{1\} \times \operatorname{Pr}\{1\} \times \operatorname{Pr}\{0\}$

A Simple Case: Two Genes
conditions

```
gene 1 1 1 1 1 0 0 0 0
gene 2 0 0 1 1 0 0
```

- Only three possible models to consider

What is the Probability of One
Measurement on a Microarray?

- We can estimate $\operatorname{Pr}\{1\}$ and $\operatorname{Pr}\{0\}$ by counting how often each individual value occurs

$$
\begin{aligned}
& -\operatorname{Pr}\{1\}=5 / 8 \\
& -\operatorname{Pr}\{0\}=3 / 8
\end{aligned}
$$

- Therefore:

$$
\begin{aligned}
& \operatorname{Pr}\left\{\begin{array}{|l|l|l|l|l|l|l|l}
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
\hline
\end{array}\right\} \\
& =\operatorname{Pr}\{1\} \times \operatorname{Pr}\{1\} \times \operatorname{Pr}\{0\} \times \operatorname{Pr}\{0\} \times \operatorname{Pr}\{1\} \mathrm{x} \\
& \operatorname{Pr}\{1\} \times \operatorname{Pr}\{1\} \times \operatorname{Pr}\{0\} \\
& =5 / 8 \times 5 / 8 \times 3 / 8 \times 3 / 8 \times 5 / 8 \times 5 / 8 \times 5 / 8 \times 3 / 8 \\
& =0.00503
\end{aligned}
$$

Evaluating One Model

$\operatorname{Pr}\{\mathrm{D} \mid \mathrm{M}\}=\operatorname{Pr}\left\{\left.\begin{array}{l|l|l|l|l|l|l}1 & 1 & 0 & 0 & 1 & 1 & 1\end{array} \right\rvert\, \begin{array}{l}1\end{array}\right\} \mathrm{x}$

$$
=0.00503 \times 0.00503=2.5 \times 10^{-5}
$$

```
\(\operatorname{Pr}\{\mathrm{G} 2=0 \mid \mathrm{G} 1=1\}=1 / 5 \quad \operatorname{Pr}\{\mathrm{G} 2=0 \mid \mathrm{G} 1=0\}=2 / 3\)
\(\operatorname{Pr}\{\mathrm{G} 2=1 \mid \mathrm{G} 1=1\}=4 / 5 \quad \operatorname{Pr}\{\mathrm{G} 2=1 \mid \mathrm{G} 1=0\}=1 / 3\)
    data \(\mathrm{D}=\) gene \(\left.1 \begin{array}{ll|l|l|l|l|l|l|}\hline 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1\end{array}\right)\)
    model \(M=\)
        gene1
```



```
    \(=0.00503 \mathrm{x}\)
    \((1 / 5 \times 4 / 5 \times 2 / 3 \times 1 / 3 \times 4 / 5 \times 4 / 5 \times 4 / 5 \times 2 / 3)\)
    \(=6.1 \times 10^{-5}\)
```


Adding in Regulation

- How do we evaluate output probabilities for a regulated gene?

gene 1	1	1	0	0	1	1	1	0
gene 2	0	1	0	1	1	1	1	0

- We need the notion of conditional probability: evaluating the probability of gene 2 's output given that we know gene one's output:

$$
\begin{array}{ll}
\operatorname{Pr}\{\mathrm{G} 2=0 \mid \mathrm{G} 1=1\}=1 / 5 & \operatorname{Pr}\{\mathrm{G} 2=0 \mid \mathrm{G} 1=0\}=2 / 3 \\
\operatorname{Pr}\{\mathrm{G} 2=1 \mid \mathrm{G} 1=1\}=4 / 5 & \operatorname{Pr}\{\mathrm{G} 2=1|\mathrm{G}|=0\}=1 / 3
\end{array}
$$

Evaluating Another Model

$$
\text { data } \mathbf{D}=\begin{array}{l|l|l|l|l|l|l}
\text { gene } 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
\text { gene } 2 & 2 & 0 & 1 & 0 & 1 & 1 \\
\hline
\end{array}
$$

model $M=$

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathrm{x} \operatorname{Pr}\left\{\left.\begin{array}{|l|l|l|l|l|l|l|}
0 & 1 & 0 & 1 & 1 & 1 & 1
\end{array} \right\rvert\,\right. \\
\hline
\end{array}\right\} \\
& =(1 / 3 \times 4 / 5 \times 2 / 3 \times 1 / 5 \times 4 / 5 \times 4 / 5 \times 4 / 5 \times 2 / 3) \times \\
& 0.00503 \\
& =6.1 \times 10^{-5}
\end{aligned}
$$

Comparing the Models for Two Genes

Conclusions:
-Knowing the expression of gene 1 helps us predict the expression of gene 2 and vice versa
-We can suggest there should be an edge between them but cannot decide the direction it should take

The Project

- Take binary expression data as input
- Find the regulatory network with the highest likelihood
- Display the network somehow

Generalizing to Many Genes

- The same basic concepts let us evaluate the plausibility of any regulatory model
$\operatorname{Pr}\left\{\begin{array}{|l|l|l|l|l|l|l|l|}\hline 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ \hline\end{array}\right.$

Computational ideas used here...

- Representing networks computationally
- Visualizing the networks
- Breaking a larger problem into smaller easy-to-solve parts
- Maximum likelihood method

Biological ideas used here...

- The concept of gene regulatory networks
- Problem solving with gene expression data

Remember Picobot?

NEWS
0 NxWx -> E 0
0 NExx $->$ S 1
NEWS format!

80,

Evolving Programs through Simulated Evolution!

Fitness $=\mathbf{0 . 4 2}$

Programs, Parents, Offspring

Evolving Programs through
Simulated Evolution!

Fitness = 0.42
"Old" Population of size $=$ S

Choose pairs of programs to mate, preferring more fit programs over less fit ones..

```
mate(program1, program2)
```

Possible mutations

Meiosis
Crossover

Offspring!

Parent Program 1

```
0 xxxx -> N 2
0 Nxxx -> S 4
0 NExx -> W 0
0 xExx -> S 3
0 xxWx -> E 1
0 xxWx -> E 1 
1 xxWx -> E 4
4 xxxx -> N 2
#.. xxWx -> S 4
    Offspring
```


Computational ideas used here...

- Object-oriented programming!

```
class Program:
    def __init__(self):
    def randomize(self):
    def getMove(self, state, pattern):
    def mutate(self):
    def crossover(self, other):
    def __repr__(self):
class World:
    def __init__(self, initial_row, initial_col, program)
        self.row = initial_row
        self.col = initial_col self.state = 0
        self.program = program
        self.room = [[' ']*WIDTH for row in range(HEIGHT)]
```



```
lass World:
def __init__(self, initial_row, initial_col, program) self.row = initial_row self.room \(=\) [[' ']*WIDTH for row in range(HEIGHT)]
```


Biological ideas used here...

- Demonstration of "power" of evolution
- Exploration impact of mating and mutation on fitness

