The CS 5 Post

ALIEN INVASION!!!

Claremont (AP): A party at a private college here was disrupted when uninvited aliens burst through the gates.
"Every year, we celebrate Long Tall Penguins," explained an angry student. "We get together, dress like the stuffiest professors, and chip bits off an iceberg to cool our drinks. This year, just as we were about to chill the mackerel, two strange alien creatures ran into the courtyard, picked everyone up, and took turns stacking us in piles."
But another student claimed that the aliens were just misunderstood. "They love to play Connect 4, and since we were wearing black and white clothes, they thought we were playing pieces. They stacked us up in a 5-ply

Read 7.1-7.2! lookahead formation. It was fun!"
According to police, no charges will be filed because the aliens are not subject to Solar jurisdiction.

Simplest Model of Computation

Finite State Machines

Example:
start state
"input funnel"

transitions
"where to go" labeled by input !
accepting states double circled

FSM's Can't Count! (High)

Because they're finite, FSMs can only count finitely high !
They can handle modulo, but not arbitrary, arithmetic

Computable with FSMs

Even/odd sums or differences
Multiples of other integers
Finite constraints on the input:
Third digit is a 1
Third-to-last digit is a 1
Third digit == third-to-last digit etc.

Uncomputable with FSMs

Equal numbers of two values
A given difference between two values

Palindromes

Anything modeled by a potentially unbounded while loop

FSM's Can't Count!

So let's build a better machine!

"Turing Machine"

Turing Machines

A simple model of universal computation

The tape: an unbounded amount of memory. Consists of cells, each containing exactly one character (e.g. 0, 1, or (blank))
 - The control: a finite amount of memory, the control states-some are accepting, some are not.

Ability to move left and right

The control state
The complete state of a TM is determined by:
The symbol now under the head
The symbols to the right of the head
The symbols to the left of the head

Turing Machines

Worksheet

Is this input accepted or rejected?

What inputs are accepted in general? How does it work?
Extra: How could you change this to accept palindromes? (usta thought experiment)

The Alien's Life Advice

Uncomputability!

Uncomputable Functions?

Well-defined computational tasks

Uncomputable Functions?

There are more of these...

Well-defined computational tasks

A Brief Digression on Cardinality

Hang on though, there's some new stuff here!

A Brief Digression on Cardinality

A perfect matching is called a "bijection"

To Infinity and Beyond!

$$
N=\{1,2,3,4,5, \ldots\} \quad \text { The "natural" }
$$

$E=\{2,4,6,8,10, \ldots\} \ldots$ The positive evens

To Infinity and Beyond!

$$
N=\{1,2,3,4,5, \ldots\} \quad \text { The "natural" }
$$

$E=\{2,4,6,8,10, \ldots\} \quad$ The positive evens
$Z=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
The
integers
$Q=\{-3 / 42,1 / 2,2 / 3, \ldots\}$
The
rationals

To Infinity and Beyond!

$$
N=\{1,2,3,4,5, \ldots\} \quad \text { The "natural" }
$$

$E=\{2,4,6,8,10, \ldots\} \ldots$ The positive evens
$Z=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
The
integers
$Q=\{-3 / 42,1 / 2,2 / 3, \ldots\}$
The
rationals

These sets are said to be countably infinite.

Cantor Diagonalization

Georg Cantor 1845-1918
$[0,1)=$ The set of real numbers between 0 and 1
Your claim: you have a way to list all real numbers in order so you can match them to the integers

Cantor's claim: you left something off the list

Cantor Diagonalization

Georg Cantor 1845-1918

Your list:
10.10000000000000000000 ...

2 0.333333333333333333333...
30.314159265358979323846 ...
40.424242424242424242424

5 0.917119021099999999999...

Cantor's number:
N 0.213.5.6...

The Tragic Story of Georg Cantor

"I don't know what predominates in Cantor's theory—philosophy or theology, but I am sure that there is no mathematics there."

- Leopold Kronecker
"No one shall expel us from the paradise that Cantor has created for us."
- David Hilbert

David Hilbert 18621943

A Bag of Reals

What's Computation Got to Do, Got to Do With It?

Plan:

- Show that the number of Python
 programs is countably infinite (a small infinity)
- Show that the number of possible
"computational tasks" is uncountably infinite
(a big infinity)!
Conclusion: ?

Computational Tasks?

Plan:

- Show that the number of Python
programs is countably infinite (a small infinity)
- Show that the number of possible
"computational tasks" is uncountably infinite
(a big infinity)!
def pi(): return 3.14159265...

Real output!

Counting Python Programs

1. The empty string is a Python program. So is "a".
2. After " z " we could write " + ", "-", etc. Most of those are illegal Python programs-but we don't care!
3. Now we do the 2-character programs, then 3, etc.
4. Lots of these programs do nothing-but again we don't care!

Functions

Consider all the constant mathematical functions $f(N)=x$, where x is a real number from 0 to 1 :

- $f(N)=0.5$
- $g(N)=0.707107 \ldots$
- $h(N)=0.314159 \ldots$

Functions and Programs

We know that programs are countable...
...and even simple functions are uncountable...
...so there must be more functions than programs...
... and therefore there are functions that can't be computed!

Next Time

Let's look at some interesting and useful-but (sadly) uncomputable-functions!

