
CS 5 Nightly Wrapup
College Canceled
Claremont (The Student Life): The administrators of Harvey
Mudd College announced today that the entire institution had
been canceled. Classes will terminate immediately.

“We realized that there is a much better economic model,”
explained President G. Reedy. We will continue to accept
students, and the tuition will remain the same. After four years
of paying tuition, the students will be awarded a degree, just as
in previous years. The only difference will be that we won’t
hold classes. That will give the students more time for the
pursuits they love, like video gaming, dancing, partying, and
setting things on fire, without harming their chances of getting
a lucrative job after they get their degree.”

When asked what the faculty would be doing, President
Reedy smiled. “That’s the best part!” he exclaimed. “We’ll
finally be rid of the pesky critters.”

No penguins could be reached for comment.

We know that programs are countable...

…and even simple functions are uncountable…

…so there must be more functions than programs…

…and therefore there are functions that can’t be computed!

Reminders of Countability

We know that programs are countable...

…and even simple functions are uncountable…

Reminders of Countability

What Can’t’ Be Computed?

But are all the
uncomputable functions
as boring as f(N) = x?

Show me
something
interesting!

Measuring the “Complexity” of Data

105000

versus

15623410342347958394180745…2123975

5001 digits long

Andrei Kolmogorov
1903-1987

Measuring the “Complexity” of Data

105000 = 1000000000000000000…0000000000000

5001 digits long

def a():
return 100000000000000000…000000000000

Program takes no arguments!

Program returns desired number
and halts!

Total length: 5017

I sorta think we can
do much better!

Measuring the “Complexity” of Data

105000

def a():
result = "1"
for d in range(0, 5000):

result += "0"
return int(result)

Program takes no arguments!

Program returns desired number
and halts!

Total length: 100

Maybe we could
do even better!

Measuring the “Complexity” of Data

15623410342347958394180745…2123975

5001 digits long

def a():
return 1562341034234745…2123975

Program takes no arguments!

Program returns desired number
and halts!

Total length: 5017

I sorta doubt we can
do much better!

What is the Complexity Of…?

def f():return ...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Python has at least 15

bytes of “overhead”

kc(1000000000) = 20 = 15 + 5 10**9
(1 followed by 9 0’s)

kc(100…000) =
(1 followed by 100 0’s)

This is called a googol

kc(100…000) =
(1 followed by a googol 0’s)

This is a googolplex

kc(999…999) =
(100 9’s)

kc(1010…) =
(10 a billion times…try using a string)

kc(314159265…) =
(2 billion digits of pi) Worksheet!

Measuring the “Complexity” of Data

Objective…

complexity105000

Argument: An integer n

100

Result: The length of the
shortest Python program
that:

-Takes no arguments
-Runs
-Returns the integer n

Did Kolmogorov
explicitly specify
Python?

def a():
result = "1"
for d in range(5000):

result += "0"
return int(result)

length 100

Measuring the “Complexity” of Data

There is at least one number for which it will
return the wrong answer!

We will show that complexity is uncomputable

Specifically, we will show that any implementation of
complexity must necessarily contain a bug:

Measuring the “Complexity” of Data

Our key insight:

For any value k, there is a number n whose complexity is
greater than k (why?)

def BFF():
def complexity(number):

code goes here
return calculated_complexity

counter = 0
while complexity(counter) <= 50000 + 200:

counter = counter + 1
return counter

Measuring the “Complexity” of Data
By Way of Contradiction (“BWOC”), assume we have
a “Complexity” function…

complexity105000 100
def Complexity(number):

code goes here
return complexity

Assume the
length of this
code is 50000

Notice that BFF takes no arguments, returns a
number, and halts!

Look at the value
returned by BFF. What
can you say about this
value?

BFF?Bug Finding
Function!

Measuring the “Complexity” of Data
By Way of Contradiction (“BWOC”), assume we have
a “Complexity” function…

Complexity105000 100
def Complexity(number):

code goes here
return complexity

def BFF():
def complexity(number):

code goes here
return calculated_complexity

counter = 0
while complexity(counter) <= 50000 + 200:

counter = counter + 1
return counter

Assume the
length of this
code is 50000

Notice that BFF takes no arguments, returns a
number, and halts!

Look at the value
returned by BFF. What
can you say about this
value?

The Alien’s Life Advice

Chew with your
mouth closed.

Your parents
were right.

Here’s a Way to Do Complexity

How about this?

1. There are countably many programs

2. Order them from shortest to longest

3. Check each in order to see if it returns n

The one that we find first is the shortest that can return n!

That would
work, right?

Here’s a Way to Do Complexity

How about this?

1. There are countably many programs

2. Order them from shortest to longest

3. Check each in order to see if it returns x

The one that we find first is the shortest that can return x!Can’t be
done!

x = 0
while True:

x = x + 1

Halt Checking Is Uncomputable

It is impossible to write a bug-free function hc(f) that
decides whether f halts, i.e.,

1. Returns True if f() halts, or

2. Returns False if f() loops forever

Dang!

def hc(f):
Clever stuff here

The code for a
Python function

Halt Checking Is Uncomputable

Suppose hc(f) works for all zero-argument functions f.
Write this zero-argument BFF:

Double
dang!

def BFF():
if hc(BFF):

while True:
print('Ha!’)

else:
return 42

Should hc(BFF) return True or False?

The Halting Problem
and Famous Open Problems

Fermat’s Last Theorem: There exists no
integer n > 2 s.t. an + bn = cn for non-zero
integers a, b, and c

Pierre de Fermat
1601-1665

We have a nice proof
of this theorem but
there’s not enough

room for it in this little
box.

The Halting Problem
and Famous Open Problems

Goldbach’s Conjecture: Every positive even integer >= 4
can be written as the sum of two primes.

4 = 2 + 2
6 = 3 + 3
8 = 3 + 5
10 = 3 + 7 = 5 + 5
12 = 5 + 7
14 = 3 + 11 = 7 + 7

Verified up to 4 x 1018

42 = 5 + 37

The Halting Problem
and Famous Open Problems

Goldbach’s Conjecture: Every positive
even integer >= 4 can be written
as the sum of two primes.

$1,000,000 has been offered!

The Halting Problem
and Famous Open Problems

Goldbach’s Conjecture: Every positive
even integer >= 4 can be written
as the sum of two primes.

at most 300,000
(Schnilerman, 1939)

Getting from
300,000 down to 2

shouldn’t be so
hard!

Using a Halt Checker to Prove or
Disprove the Goldbach Conjecture…

def prime_split(n):
"""Takes an EVEN POSITIVE integer argument
n and returns True if n can be
written as the sum of two primes and
False otherwise."""

def goldbach(current):
while True:

if not prime_split(current):
return # DONE!

else current = current + 2

Yowza this is cool! Who needs chocolate when
there are proofs this sweet?

Consider… goldbach(4)

Halt Checking
in the Real World

The impossibility of halt checking implies you can’t write a
program that will understand other programs

So don’t waste
your time trying!

But wait!
You can write one

that understands some
other programs…

Regular Expressions

• Union a | b “a or b”

A regular expression is composed of three
operations:

• Concatenation ab “a then b”

where a and b can be any character strings—or regular expressions

high precedence• Kleene Star a* “0 or more a’s”

low precedence

base case recursively defined !

10

1* | 10*

(10)*
Examples of three

regular expressions and
overall "regex" syntax.

Regular Expressions

• Union a | b “a or b”

A regular expression is composed of three
operations:

• Concatenation ab “a then b”

where a and b can be any character strings—or regular expressions

high precedence• Kleene Star a* “0 or more a’s”

low precedence

base case recursively defined !

10

1* | 10*

(10)*

Matches the string 10, which is the language { 10 }
…or L = { w | w is 10 }

What strings are in the other two REs' languages?

Regular Expressions

• Union a | b “a or b”

A regular expression is composed of three
operations:

• Concatenation ab “a then b”

where a and b can be any bit strings—or regular expressions

high precedence• Kleene Star a* “0 or more a’s”

low precedence

base case recursively defined !

(01* | 10)*

Here is a fairly complex regular expression.

What strings are in (and out of) this language?

Try It!

L = { w | w’s second-to-last character is a 1 }

L = { w | every 1 in w has a 0 after it }

L = { w | w’s first and last bits are the same }

How could you
implement other

operators?

a+
~(11)

one or more as

strings not matching 11

Try writing these REs in
terms of the original three…

Extra: can every RE avoid nested *'s ?

L = { w | w contains at least one 0 }
Description of a formal language Equivalent RE

Is there an equivalent RE to this one
that avoids the nested * operators? (01* | 10)*

~astrings not matching a

• Union a | b “a or b”
• Concatenation ab “a then b”

• Kleene Star a* “0 or more a’s”

Operator Name Example Description

1*0(0|1)*
(0|1)*1(0|1)
0*(100*)* or (0|10)*
(1(0|1)*1)|(0(0|1)*0)

Try It!

L = { w | w’s second-to-last character is a 1 }

L = { w | every 1 in w has a 0 after it }

L = { w | w’s first and last bits are the same }

How could you
implement other

operators?

a+
~(11)

one or more as

strings not matching 11

Try writing these REs in
terms of the original three…

Extra: can every RE avoid nested *'s ?

L = { w | w contains at least one 0 }
Description of a formal language Equivalent RE

Is there an equivalent RE to this one
that avoids the nested * operators? (01* | 10)*

~astrings not matching a

• Union a | b “a or b”
• Concatenation ab “a then b”

• Kleene Star a* “0 or more a’s”

Operator Name Example Description

1*0(0|1)*

2008

still open…
gen. star height problem - star

height with ~ operator

L.C. Eggan, 1963
star height problem solved

2011

REs in Practice

Unix’s egrep does a line-by-line search for a regex:

egrep 'hh'
egrep 'y.*y'
egrep '(xq|hq)'
egrep '^y.*y$'

good for
crosswords !

not always
obvious … egrep '^(0|1(01*0)*1)(0|1(01*0)*1)*$' binStr

Almost all languages
have an RE library…

/usr/share/dict/words

symbol for start of a line symbol for end of a linesymbol for any
character—a shortcut for
(a|b|c|…|z|0|1|…|9|…)

vowel vowelU

egrep –f regexFile matchingStringFile

with first and last the same?

knuth: ~cs60/egrep

PERL
practical

extraction
and report
language

www.regular-expressions.info/regexbuddy/email.html

But how does regular expression
matching actually work... ?

xkcd to the rescue, perhaps?

lang:java goooo*gle

REs to the Rescue!

