
Learning Goals
• Practice conditionals and for loops
• Use Turtle Graphics

Reading and Lab

• This week: 1.6 – 1.11, Chapter 2
• Lab this week…

– Please check in at 1:15 PM to get credit for lab
• stay until done with lab problems or 3:15 PM,

whichever comes first ;^)
– Practice with for loops and if-elif-else
– Getting ready for gene finding!
– Some fun optional bonus problems

The reading
reinforces the
lecture material.

Last time…
def perfect(n):

"""Returns True is n is perfect, False otherwise"""
sod = 0
for d in range(1, n):

if n % d == 0:
sod = sod + d

return n == sod Perfect-ing the
return statement

More Mysteries!
def mystery1(n):

for k in range(1, n):
if k*k == n: return True

return False

def mystery2(n):
for k in range(1, n):

if n == 1:
return True

elif not n % 2 == 0: # n % 2 != 0
return False

else:
n = n/2

Assume that we run
mystery1 with
positive integers
and mystery2 with
n>2 as input!

Try these on your worksheet!

Q

If you have time: how could you
change these functions to print
an error message if the input is
too low?

Collatz Revisited

def collatz(n):
"""Returns n/2 if n is even and
returns 3n+1 otherwise"""

if n % 2 == 0: # if n is even...
return n/2

else:
return 3*n + 1

>>> test_num(16, 10)
True

If we start with 16 and apply collatz repeatedly,
do we get to 1 within the first 10 repeats?

def test_num(number, repeats):
"""Returns True if the number collatzes
within the given number of repeats"""
for i in range(repeats):

number = collatz(number)
if number == 1: return True

return False

Collatz Re-Revisited

>>> test_conjecture(20, 10)
False
>>> test_conjecture(20, 50)
True

def test_conjecture(up_to, repeats):
"""Determines if all numbers from 2 to up_to
collatz to 1 within given number of repeats"""
for number in range(2, up_to+1):

Try all numbers from 2 to 20 Up to this many repeats
each time!

def test_num(number, repeats):
"""Returns True if the number collatzes
within the given number of repeats"""

Fill in the missing parts!

Q

Mystery I love a good mystery!

>>> leppard("hello")

>>> leppard("hello to you")

def leppard(input_string):
"""What does this do?"""
output_string = ""
for symbol in input_string:

if symbol == "o":
output_string = output_string + "ooo"

else:
output_string = output_string + symbol

return output_string

Q

z detector

>>> z("I like zyzzyvas!")

3

>>> z("I am opposed to the letter after y")

0

def z(input):
counter = 0
for symbol in input:

if symbol == 'z':
counter = counter+1

return counter

def z(input):
counter = 0
for i in range(len(input)):

if input[i] == 'z':
counter = counter + 1

return counter

0123456789111111
012345

[0,1,2,3,…15]

The “direct” method The “indirect” or “index” method

Spam counter!
>>> spam_count("I like spam with spamspamspam!")

4

>>> spam_count("spamityspampampam!")
2

def spam_count(input):

counter = 0

for letter in input:

???

First attempt…
The direct method

Q

Spam counter!
>>> spam_count("I like spam with spamspamspam!")

4
012345678911111111

01234567
>>> spam_count("spamityspampampam!")
2

def spam_count(input):

counter = 0

for i in range(len(input)):

Finish this in your
notes. Hint: Use
slicing! (e.g., input[2:5])

Ah, the indirect/index
method!

Q

Functions that return lists
>>> squares(5)

[1, 4, 9, 16, 25]

def squares(n):

output = []
for x in range(1, n+1):

output = output + [x*x] # upgrade to list-hood!

return output

def squares(n):
output = []

for x in range(1, n+1):

output.append(x*x)
return output

Spam finder!
01234567891

0

>>> spam_finder("spamspamity")
[0, 4]

>>> spam_finder("ssspam!")
[2]

def spam_finder(input):

Q

Stepping!

def return_codons(DNA_string):
codon_list = []
for i in range(0, len(DNA_string), 3):

codon_list.append(DNA_string[i:i+3])
return codon_list

0123456789
>>> return_codons("AAATTTGGGC")
["AAA", "TTT", "GGG", "C"]

What colorful
codons you
have!

Feltham et al. (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology

Example: Do pesticides affect bumble bees?
Concern about imidacloprid crop
seed treatments potentially harming
bumble bees

Weighed bumble bees as
they exited/entered nest

Photo credit: Richard Gill

Bumble bee collecting pollen
Photo credit: Dave Goulson

massCollected = [49,40,60,38,36,37,35,51,47,32]

treatment = ['C','P','C','C','P','P','P','C','C','P']

def listInCategory(numList,catList,category):
"""Returns a list of the numbers in numList
that correspond to a particular category from
catList"""”
output = []
for index in range(len(numList)):

if catList[index] == category:

Example: returning lists Q
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Feltham et al. (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology

massCollectedPest = [49,60,38,51,47]

massCollectedContrl = [40,36,37,35,32]

def mean(numList):
"""Returns the mean of
a list of numbers"""”
sum = 0
count = 0
for num in numList:

sum = sum + num
count = count + 1

return sum / count

mean(massCollectedPest) < mean(massCollectedContrl)

36.0 49.0

True

Turtle Graphics

Logo (programming language) [1967]

Meet Python’s Turtle…
>>> import turtle

>>> turtle.forward(100)

>>> turtle.right(90)

Hey, is it legal to
import turtles?

DEMO!

Turtle Functions…
import turtle

def square(length):
"""Draws a square with given side length"""
for x in range(0, 4):

turtle.forward(length)
turtle.right(90)

def polygon(length, sides):
"""Draws a polygon with given side length

and number of sides"""
for x in range(0, sides):

turtle.forward(length)
turtle.right(360.0/sides)

Notice that this for loop
is just being used to
repeat something 4 times!

Also nothing is returned
by these functions!

DEMO!

Spirograph!
import turtle

def polygon(length, sides):
for x in range(0, sides):

turtle.forward(length)
turtle.right(360.0/sides)

def spirograph(length, sides, polys):
for iteration in range(0, polys):

polygon(length, sides)
turtle.right(360.0/polys)

DEMO!>>> spirograph(50, 6, 10)

More Mysteries!
def mystery1(n):

for k in range(1, n):
if k*k == n: return True

return False

def mystery2(n):
for k in range(1, n):

if n == 1:
return True

elif not n % 2 == 0: # n % 2 != 0
return False

else:
n = n/2

If you have time: how could you
change these functions to print
an error message if the input is
too low?

Name __________________________________ Assume that we run
mystery1 with
positive integers
and mystery2 with
n>2 as input!

