F2

CS 5 Green

Learning Goals
* Practice conditionals and for loops

» Use Turtle Graphics

Reading and Lab

The reading
reinforces the
lecture material.

 This week: 1.6 — 1.11, Chapter 2 %
« Lab this week...
— Please check in at 1:15 PM to get credit for lab

 stay until done with lab problems or 3:15 PM,
whichever comes first ;*)

— Practice with for loopsand if-elif-else

— Getting ready for gene finding!
— Some fun optional bonus problems

Last time...

def perfect(n):

"""Returns True 1s n 1s perfect, False otherwise"""
sod = 0
for d 1in range(l, n):
1t n % d ==
sod = sod + d

return n == sod Perfect-ing the
return statement

=

5%

More Mysteries! 9

Assume that we run

def mysteryl (n) : mystery1 with

, positive integers
for k in range(l, n): and mystery2 with

1f k*k == n: return True n>2 as input!

return False __\///

def mysteryZ(n): Try these on your worksheet!
for k 1in range(l, n):
1t n == 1:
return True
elif[not[n s 2 == O} fns%s 2 !=20
return False
else:

_ If you have time: how could you
Il n/2 change these functions to print

an error message if the input is
too low?

Collatz Revisited

def collatz (n):
"""Returns n/2 if n is even and

>>> teSt_num(16 ’]-O) returns 3n+l otherwise"™""
True

1ifn % 2 == 0: # if n is even...
return n/2
else:
return 3*n + 1

If we start with 16 and apply collatz repeatedly,
do we get to 1 within the first 10 repeats?

def test num(number, repeats):
"""Returns True 1f the number collatzes
within the given number of repeats"""
for 1 1n range (repeats):
number = collatz (number)
1% number == 1: return True
return False

Collatz Re-Revisited

def test num(number, repeats):
"""Returns True 1f the number collatzes
within the given number of repeats"""

>>> test conjecture (20, 10)
False
>>> test conjecture (20, 50)

True / “\\\\\
Try all numbers from 2 to 20 Up to this many repeats

each timel

def test conjecture(up to, repeats):
"""Determines 1f all numbers from 2 to up to
collatz to 1 within given number of repeats"""
for number 1n range (2, up to+l):

Fill in the missing parts!

Mystery

| love a good mystery!

def leppard(input string):
"""What does this do?"""
output string = ""
for symbol in input string:
1T symbol == "o":
output string = output string + "ooo"
else:
output string = output string + symbol
return output string

>>> leppard("hello")

>>> leppard("hello to you")

z detector

0123456789111111
012345
>>> z ("I like zyzzyvas!")

3

>>> z ("I am opposed to the letter after y")
0

def z(input) : def z(input) :
counter = 0 counter = 0 [0,123,...15]
for symbol 1in input: 1 rorgetdentimnpuE i+
1f symbol == "'z': 1f 1nputfi] == 'z':
counter = counter+l counter = counter + 1
return counter return counter

The “direct” method The “indirect’ or “index” method

Spam counter! 9

>>> spam count ("I like spam with spamspamspam!")
4

>>> spam count ("spamityspampampam!")

2 First attempt...
The direct method
| L
def spam count (input) : ".g?
counter = 0

for letter 1in 1input:

2727

Spam counter! 9

>>> spam count ("I like spam with spamspamspam!")
4

012345678911111111
01234567 IFinish this in your
>>> spam count ("spamityspampampam!") |notes. Hint: Use
2 slicing! (e.g., input[2:5])
def spam count (1nput) : n
counter = 0

. , Ah, the indirect/index
for 1 1n range(len(input)) : method!

Functions that return lists

>>> squares (5)
(1, 4, 9, 1le6, 25]

squares (n) :

output = []
X range (1, n+1):
output = output + [x*x] [# upgrade to list—hoodﬂ

output

squares (n) :
output = []

X range (1, n+1):

output Jappend|(x*x)

output

Spam finder!

01234567891
0
>>> spam finder ("spamspamity")
[0, 4]
>>> spam finder ("ssspam!")
[2]

def spam finder (1nput) :

Stepping!

def return codons (DNA string) :
codon list = []
for 1 1in range (0, len(DNA string), 3):
codon list.append(DNA string[i1:1+3])
return codon list

0123456789
>>> return codons ("AAATTTGGGC™) What colorful
["ADAM , W , leleleld , oo] codons you
have!
e

&%

Example: Do pesticides affect bumble bees?

Concern about imidacloprid crop t’ . it
seed treatments potentially harming |8 T,
bumble bees
| GROUP INSECTICIDE A

® i
Gaucho™ 600 SC insecticide poy.
For uses in pest management, suppression of insect vectored diseases and maintenance of plant health. A 4 I
A?nt:::c::;iz.s‘?-l[(ESN-z;.loro-&pyridinyI)methyl]-N-nitro-Z-imidazolidinimine ... 48.7% Welghed bumble beeS as

... et they exited/entered nest

PP rm———— S WLt oeroRs uanG Photo credit: Richard Gill

Bumble bee collecting pollen
Photo credit: Dave Goulson

Feltham et al. (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology

Example: returning lists
0 1 o

2 3 4 5 7 8 9
massCollected = [49,40,060,38,36,37,35,51,47,32]

0 1 2 3 4 5 6 7 8 9
treatment = ['C','P','C','C','P','P','P','C','C','P']

listInCategory (numList,catList, category) :
"""Returns a list of the numbers in numList

that correspond to a particular category from
catList"""

output = []
for index in range(len (numList)) :
1f catList[index] == category:

massCollectedPest = [49,060,38,51,47]

massCollectedContrl = [40,36,37,35,32]

mean (numList) : b —

"""Returns the mean of 3 & |

a list of numbers""" égp

sum = 0 %

count = 0 B~ g

for num numlList: =§8_ %
sum = sum + num S -
count = count + 1 §§$

return sum / count | ,

Control Treatment

— 360 — 490

mean (massCollectedPest) < mean (massCollectedContrl)

AN

True

Feltham et al. (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology

Turtle Graphics

Logo (programmlng language) [1967]

Meet Python's Turtle...

>>> 1mport turtle Hey, is it legal to

import turtles?
=P

>>> turtle.forward(100) m

>>> turtle.right (90)

DEMO!

Turtle Functions...

import turtle

def square (length) :
"""Draws a square with given side length"""
for x 1in range (0, 4):

turtle.forward(length) Notice that this for loop

turtle.right (90) is just being used to
repeat something 4 times!

def polygon (length, sides): Also nothing is returned
"""Draws a polygon with given side length |by these functions!

and number of sides""" [

for x 1in range (0, sides): %

turtle.forward (length)
turtle.right (360.0/sides)

DEMO!

CECCEECIEE] BH3ans oy

Spirograph!

1mport turtle

def polygon (length, sides):
for x 1n range (0, sides):
turtle.forward (length)
turtle.right (360.0/sides)

def spirograph (length, sides, polys)
for iteration in range (0, polys):
polygon (length, sides)
turtle.right (360.0/polys)

>>> spirograph (50, 6, 10) DEMO!

Name

Assume that we run
. ' mystery1 with

positive integers
More Mysteries! |pestive integers
n>2 as input!

def mysteryl (n) : '_jb//
for k 1in range(l, n):
1t k*k == n: return True ”
return False

def mystery2Z(n):
for k 1in range(l, n):

1t n == 1:
return True

elif[not[n s 2 == O} fns%s 2 !'=0
return False

else:
n = n/2 If you have time: how could you

change these functions to print

an error message if the input is
too low?

