
HMC Summer Research Celebration

Thursday Sept 23
Drop by anytime between

4:30 - 6:30 pm

Attendees are eligible to
win raffle prizes

Curious about research opportunities at HMC?

Want to learn more about your friend’s summer project?

Come to the poster session to learn about projects happening
across campus!

Zoom Meeting 868 2909 2950, Passcode D5sDRH
Make sure you have the latest version of Zoom

Common Mistakes

Common Mistakes (HW1)

You will be graded on style and readability.
Docstrings
Comments
Purposeful variable names

Evolution of sex determination
systems

http://en.wikipedia.org/wiki/American_alligator
http://en.wikipedia.org/wiki/Amphiprioninae
http://commons.wikimedia.org/wiki/File:Male_mallard_duck_3.jpg
http://en.wikipedia.org/wiki/Hippopotamus

Chromosomal sex determination in
birds and mammals

X X X Y

♂♀

Z Z Z W

♀♂

Do these sex-determination systems share a common
ancestor or did they evolve independently???

Characteristics shared by descent are
homologous

http://www.flickr.com/photos/sunstones/2664993674/
http://www.flickr.com/photos/nycgeo/1065447484/sizes/z/in/photostream/
http://www.flickr.com/photos/bbum/98144389/sizes/z/in/photostream/
http://commons.wikimedia.org/wiki/File:Mother_And_Baby_Elephant.jpg

Is the mammalian X homologous to
the avian Z?

Nature 453, 175-183 fig1

Some things that “require” more than
for and while loops

Measure similarity of two DNA sequences…
GGGACTCACTCATCAGTT
CACTCATTTGCAGTCATG

I’d be “toast” if
I had to do this
right now!

Predict how an RNA
sequence will fold…

Compute and
draw
phylogenetic
trees…

Learning Goals
• Describe the concept of recursion
• State the difference between the base case

and recursive case
• Practice recursion
• State the tradeoffs between recursion and

iteration

This week’s reading…

Chapter 5: Recursion

only 11 pages (dbl spaced!)

https://2.flexiple.com/free-illustrations/reading-newspaper

This week’s homework…

Mitochondrial Eve!

This week’s homework…

Got Milk?

Recursion! (Lab and Bonus)

A word about “scope”
def joe(x):

y = bjorn(x)
z = x + y
return z

def bjorn(x):
x = 42
return 2

>>> joe(1)

What does
joe(1) return?

What Happens Inside a Function?

def h(x):
return f(x) + x

def f(x):
x = x-1
return g(x)+1

def g(x):
return x*2

Two key points…
• Functions return to where they were called from
• Each function keeps its own values of its variables

Remember, each
function has its

own private
variables!

Factorial (iterative)

n! = n ´ (n-1) ´ (n-2) ´ … ´ 1

def factorial(n):
initialize result
result = 1

multiply each number between 1 and n
for curNum in range(1, n+1):

result = result * curNum

return result

Using loops to solve problems is called iteration.

Factorial (recursive)

n! = n ´ (n-1) ´ (n-2) ´ … ´ 1

n! = n x (n-1)! “recursive case”

0! = 1 “base case”

Recursive function: a function which
includes itself as part of its definition.

iterative solution

recursive solution

Factorial (recursive)

0! = 1

n! = n ´ (n-1)!

Math
inductive definition

Python (Functional)
recursive function

recursive factorial
def factorial(n):

base case: n equals zero
if n == 0:

return 1
recursive case: n > 0
else:

return n * factorial(n-1)

Base case

Recursive case

The input to the recursive call is
simpler than the original input!!

Is Recursion Magic?

recursive factorial
def factorial(n):

if n == 0:
return 1

else:
return n*factorial(n-1)

factorial(3):

return 3 * factorial(2)

factorial(2):

return 2 * factorial(1)

factorial(1):

return 1 * factorial(0)

factorial(0):

return 1

1

Is Recursion Magic?

recursive factorial
def factorial(n):

if n == 0:
return 1

else:
return n*factorial(n-1)

factorial(3):

return 3 * factorial(2)

factorial(2):

return 2 * factorial(1)

factorial(1):

return 1 * (1)

1

Is Recursion Magic?

recursive factorial
def factorial(n):

if n == 0:
return 1

else:
return n*factorial(n-1)

factorial(3):

return 3 * factorial(2)

factorial(2):

return 2 * (1)

2

Is Recursion Magic?

recursive factorial
def factorial(n):

if n == 0:
return 1

else:
return n*factorial(n-1)

factorial(3):

return 3 * (2)
6

Recursion in a children’s book

Problem:
remove the pink

Non-recursive attempts fail

Non-recursive attempts fail

The Cat implements recursion

The Cat implements recursion

Cat Z reaches the base case

For voom was the base case
The problem now solved
Each cat returned an answer
And the pink was dissolved

Computing the length of a list

>>> len([1, 42, "spam"])
3
>>> len([1, [2, [3, 4]]])
2

def len(inputL):
'''Returns the length of a list’’’

Python has
this built-in!

QWorksheet

Summing up the numbers in a list

>>> sum([1, 42, 7])
50
>>> sum([42])
42
>>> sum([])
0

def sum(inputL):
'''Returns the sum of numbers in a list’’’

Q

Python has
this built-in
too!

No new variables required!
def len(inputL):

'''RECURSIVE VERSION'''
if inputL == []:

return 0
else:

return 1 + len(inputL[1:])

def lenV2(inputL):
’’ITERATIVE VERSION'''
counter = 0 # a new variable!
for x in inputL: # another new variable

counter += 1
return counter

Intermediate values
stored in “stack
frames” instead!

Reversing a list

>>> reverse([1, 2, 3, 4])
[4, 3, 2, 1]

def reverse(inputL):

'''reverses the order of a list'''

[], , Q

Recursion <(˚Ɛ˚<)
“To understand recursion, you

must first understand recursion”
- anonymous Mudd alum

Recursion <(˚Ɛ˚<)

Recursion in nature

https://commons.wikimedia.org/w/index.php?curid=30148269

https://commons.wikimedia.org/w/index.php?curid=6777039

Recursion in nature

https://laboratoryinfo.com/microvilli/

Recursion in nature

Recursion in nature

The following pages have
a number of exercises for
you to do (in your notes).
You’re welcome to work at
your own pace.

min
member
pal

insert/sort

Minimum!
>>> min([372, 112, 42, 451])
42

>>> min([16])
16

def min(inputL):

'''Returns smallest value in a list'''

[], ,

Assume that the input
list will never be empty!
Use len as a helper
function!

Q

member
>>> member(42, [1, 3, 5, 42, 7])

True
>>> member(42, ['spam', 'is', 'yummy'])
False

def member(thing, inputL):
'''Return True if thing in inputL

and False otherwise.'''

This is sort of like the “in” thing in
Python, but don’t use “in” here. Just
list indexing, slicing, and recursion!

Q

Palindrome?
>>> pal('radar')

True
>>> pal('amanaplanacanalpanama')
True
>>> pal('spam')
False

def pal(s):

'''Returns True if s is a palindrome
and False otherwise'''

Q

Insertion Sorting
>>> sort([42, 57, 1, 3])

[1, 3, 42, 57]

The idea… Given a list like L = [42, 57, 1, 3]
• Slice off the first element. Now we have a shorter list… [57, 1, 3]
• Use recursion to sort that list. Now we have… [1, 3, 57]
• Now, insert L[0](Which is 42)into the right place in [1, 3, 57]…

[1, 3, 42, 57]

def insert(x, sorted_list):
'''Takes a number and sorted list as input and returns a new list
that has x inserted into the right place in the sorted list'''

def sort(my_list):
'''Sorts a list using insert as a helper function'''

Challenge
Question

