WHAT ARE YOO WORKING ON?

TRYING TO FiX THE. PROBLEMS T
CREATED WHEN I TRED To Fix
///

THE PROBLEMS I CREATED \JHEN

T TRIEDTO FIX THE. PROBLEMS
T CREATED LJHEN...

/

xkcd, Fixing Problems

Homework2 recap

Check the feedback that the grutors give you!
Don’t make the same mistakes twice!

We will be assuming you understand for and while loops
Please reach out if you are confused or need more help

Submit all the required files!
Many people did not submit geneFinder.txt properly

This made the autograder award O points!

CHECK THE AUTOGRADER RESULTS AFTER SUBMITTING!

Maximizing the autograder’s utility

TWO STATES OF CODING

Submit incomplete
assignments!

You can resubmit as
many times as you want
before the deadline!

This will help find bugs
In your functions before
they cascade into bigger
problems.

S

CS 5 Green

Learning Goals

* Review recursion

« Explain the use-it-or-lose-it strategy for
recursion

Temp variables are not req'd

>>> sum([10, 2, 30]) REEECRCE UG CEN R R
492 counter = 0

def sum(myList): lEi

Return sum of the numbers in myList
bc: empty list => 0
1f myList == []:

return 0

rc: add 1%t item to remaining sum
else:

return myList[0] + sum(myList[1l:])

Temp variables can be used ...

>>> sum([10, 2, 30]) R RRE T E WA e R RIS
42

def sum(myList): lEi

Return sum of the numbers in myList
bc: empty list => 0
1f myList == []:

return 0

rc: add 1%t item to remaining sum

else: # all the variables are used and/or returned!
firstNum = myList[0]
remL = myList[1l:]
remSum = sum(remL)

return firstNum + remSum

... but only if their values get used

>>> sum([10, 2, 30]) RIEERIREJIEIWAZ G AR
42

def sum(myList): lEi

"""Return sum of the numbers in myList
counter = 0 # counter will be reset every time

bc: empty list => 0
1f myList == []:

return 0

bad code.
else:
counter += myList[O0]
sum(myList[1l:]) # this value is not saved!

return counter # counter == myList[0]

... but only if their values get used

>>> sum([10, 2, 30]) RIEERIREJIEIWAZ G AR
42

def sum(myList): 'Ei

"""Return sum of the numbers in myList""”
counter = 0 # counter will be reset every time
bc: empty list => 0

1f myList == []:

return 0

good code.
else:
counter += myList[O0]
counter += sum(myList[l:]) # this works now!

return counter

Quotient division and Modulo (mod)

>>> 14 / 3 # division
4.6666666066666667

>>> 14 // 3 # quotient T_(:;::>-J&£§§;i>
4

2 | Y

>>> 14 ¢ 3 # mod v

2 _,\1
L

-

Mystery!

def mystery(a):
"""what’s a docstring? (/8#%3)./z-L1—~L"""
b =2
c =b // b # comments aren’t important, right? (q_7m)
d =c¢c-c
1f a = []: return d
elif len(a) == c: return a[d]
else: return mystery(a[:len(a)//b]) + mystery(a[len(a)//b:])

Mystery!

def mystery(myList):
"""what’s a docstring? (/8#%3)./z-L1—~L"""
1f myList == []:
return 0

elif len(myList) ==
return myList[0]

else:
splitIdx = len(myList) // 2
frontHalf = myList[:splitIdx]
backHalf = myList[splitIdx:]
return mystery(frontHalf) + mystery(backHalf)

The Scale Problem

Each weight

Gold Spam nugget is claimed to weigh 12 kilos REWLLUETEL
Weights: [2, 3, 4, 7, 10, 42] i most once!
>> subset (12, [2, 3, 4, 7, 10, 42])

True

>>> subset (8, [2, 3, 4, 7, 10, 42])

False

>>> subset (15, [2, 3, 4, 7, 10, 42])

7?77

A greedy solution

Strategy:
find the closest value less than or equal to the target
subtract that value, and recurse with the remaining list

find the next value until we reach 0 or nothing left to pick
True if target is 0; False if nothing left to pick

Each weight
can be used at

most once!

&%

The Use-it-or-lose-it Solution

Goal:
try all combinations of numbers that might make sense

Two base cases:
If our target reaches 0, then a subset exists
If our list becomes empty, then a subset does not exist

Three recursive cases:
If a number exceeds our target, then we don't need it
otherwise,
try using a number and recursing
try losing a number and recursing

Writing subset @

Fill this in (in your notes)!

subset(4, [1, 2, 3, 5]) mwp T 1116

use it

subset(3, [2, 3, 5])

subset(1, [3, 5])

subset(1, [5])

FFalse

A4
subset(1, [])

True False

lose it

subset(4, [2, 3, 5])

use it ose it

False False

subset(3, [3, 5])

. use it se it
False

True False
v

subset(0, [5]) subset 3, [5])

def subset(target, L):

1f target == 0: return True
elif L == []: return False
elif L[0] > target: return subset(target, L[1l:])
else:
it = L[O]
use it = subset(target — it, L[1l:])
lose it = subset(target, L[1l:])
return use it or lose it

>>> change(42, [25, 10, 5,

5

>>> change (42, [10, 5, 1])

6

>>> change (42, [25, 21, 1])

2

Change do we need?

“greedy” approach does not work!

In this problem,
we are allowed
to use a coin

denomination

as many times
as we want!

Anatomy of aBig- Israel's Booming WL e A(1]
Bucks Legal Scam Tech Economy BUY HEWLETT-PACKARD

IS GREED
STILL
GOOD?

The hedge funds
sure think so. And

if Gordon Gekko

were on the Street

today, they'd eat

him for breakfast. ‘ WORES
BY ANDY SERWER 3 p> 2. v

CAROL

LOOMIS
GETS INSIDE
KKR

Worksheet

Try to make

Change

change

>>> change (42, [25, 21, 1])

2 5
def change(amount, coins):

"""Returns the minimum number of coins needed to
make change for the given amount"""

1if amount == 0: return
elif coins == []: return
else:

it = coins[0]

1f amount < it:
return

else:
uselt

loseIt =

return

Comparing DNA with Longest

Common Subsequence (LCS) B &4
°° GS = "GTACGTCGATAACTG" i B
AGGACAT B o8 = [ommcorenme, S

ATTACGAT Schiitz gene @

>>> LCS("AGGACAT", "ATTACGAT")

LCS ("Spam", "pimS")

Try writing LCS

Base case(s)?

>>> LCS("AGGACAT", "ATTACGAT") First symbols match?
5 Otherwise?

max(x, y) Is built-in
def LCS(stringl, string2):

1f stringl == "" or string2 == "": return 0
elif stringl[0] == string2[0]:

return 1 + LCS(stringl[l:], string2[1l:])
else:

return LCS(stringl[l:], string2[1l:])

LCS("spam", "pam") -> LCS("pam”, "am") ->
LCS(llamll, llmll) _> LCS(llall, mn) _> O

Greed is bad!

S

o

Try writing LCS

>>> LCS("AGGACAT", "ATTACGAT")
5

def LCS(stringl, string2):

1f stringl == "" or string2 == "": return 0
elif stringl[0] == string2[0]:

return 1 + LCS(stringl[l:], string2[1l:])
else:

optionl =

option2 =

return max(optionl, option2)

Edit Distance (a sneak preview of things to come!)

>>> ED("ATTATCG", "ACATTC")
4

ATTAT-CG
A-CATTC-

>>> ED("spam", "scramble")
5

sp am

scramble

spam ->
scam ->
scram ->
scramb -> scrambl -> scramble

Turtle Meets Recursion!
B

6%
&

turtle

mystery(leg length, num legs):
num legs ==

turtle.forward(leg length)

turtle.right(90)
mystery(leg length + 10, num legs - 1)

Demo

&%
&9

Turtle + Fractals = <("0'<)

The Koch Snowflake Fractal:

7 SRR ERERER

level O level 1 level 2 level 3 level 4 level 5

level O

1/3 1/3

level 1

1/3 1/3 1/3

import turtle

def koch side(length, level):
1f level ==

turtle.forward(length)

else:

koch side(length/3, level-1)

turtle.left(60)

koch side(length/3, level-1)

turtle.right(120)

koch side(length/3, level-1)

turtle.left(60)

koch side(length/3, level-1)

def koch flake(length, level):

for i in range(3):

koch side(length, level)

turtle.right(120)

Hey, look
what | can do!

level O

level 1

level 2

level 3

Demo

Triangle!

K

ierpins

The S

Reminder:

* Lecture feedback form
(https://forms.gle/aPmkpXDUTp4Xo4CV7)

https://forms.gle/aPmkpXDUTp4Xo4CV7

