
Roomba and Mac OS X: Cross-platform Vision and Robotics for AI

Ben Tribelhorn and Zachary Dodds
Harvey Mudd College Computer Science Department

301 Platt Boulevard
Claremont, CA 91711

btribelh@cs.hmc.edu, dodds@cs.hmc.edu

Abstract
This paper investigates the suitability of iRobot’s
Roomba as a low-cost robotic platform for use in both
research and education. We present sensor and actua-
tion models and implement algorithms that demonstrate
the Roomba’s viability. While the platform has both
benefits and drawbacks relative to similarly-priced al-
ternatives, we conclude that the Roomba will interest
many educators, especially those focusing on the com-
putational facets of robotics or applications involving
large, homogeneous groups of physical agents.

Introduction
iRobot’s Roomba vacuum (Figure 1) represents the grow-
ing ubiquity of robotics perhaps better than any other single
robotic platform. Over two million Roombas clean floors in
homes and businesses. The platform has become a standard
for task-based, low-cost robotics: imitators have been quick
to follow.

With this success as a backdrop, iRobot published a Se-
rial Command Interface API for the Roomba in January of
2006 (iRobot 2006). This API enables programmatic access
and control over almost all of the robot’s sensors and mo-
tors. This paper reports the initial experiments we have run
to assess the suitability of the Roomba as a classroom and
research resource.

In the process of this testing, we have developed Python
drivers for the Roomba and have used the platform in two
undergraduate courses. In addition, experiments with the
platform have yielded empirical models of sensing and actu-
ation which improve upon using the system’s raw kinemat-
ics and odometry. To provide focus to these experiments,
we have used the Roomba as a testbed for several spatial-
reasoning algorithms.

As a result, both research and educational communities
can now take advantage of the Roomba using the following
contributions:
• Cross-platform software drivers
• Sensor and actuation models
• Implementations of localization, mapping, and vision al-

gorithms

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Based on these resources and the perspective of eight
months of use, we conclude that the Roomba is a promising
alternative to the many other low-cost robot platforms avail-
able for research and education, particularly for researchers
and educators whose focus lies in computational or applied
facets of robotics.

Figure 1: The Roomba available off-the-shelf for US$150,
along with its built-in sensory and actuation abilities. Pro-
prioception is both capable and complete. Yet it comes with
almost no sensing that reaches beyond the platform itself.

Related Work
Robotic vacuums are increasingly pervasive; location-aware
autonomous vacuuming has been done on the Trilobite and
Roomba platforms. (Domnitcheva 2004) The Roomba has
even been adapted to playing the game Frogger on a busy
street (Torrone 2006).

Probabilistic techniques are a promising fit for the
Roomba; previously, variants of SLAM have been used in
conjunction with the Roomba by installing a laser range
finder (Gerkey 2006) and by mounting stereo vision (Meck-
lenburg 2005). Even among these efforts, to our knowledge
this work represents the first evaluation of the Roomba per
se for research and educational purposes.

Communication and Control
Hardware
Three months after iRobot released the Roomba’s serial API,
commercially available hardware interfaces simplified com-
munication with the platform. Figure 2 illustrates several

of the available connectors: USB, Bluetooth, and RS232
(RoombaDevTools 2006).

Figure 2: Commercially available USB, RS232, and Blue-
tooth serial interfaces to the Roomba provide researchers
and educators an inexpensive platform that requires no cus-
tom hardware or construction at all. When obtained with a
Roomba, these devices cost US $10, $5, and $80, respec-
tively (RoombaDevTools 2006).

The most flexible method of communication is Bluetooth,
which uses the unlicensed 2.4 GHz ISM (Industrial Scien-
tific Medical) band. Figure 2’s Bluetooth device, nicknamed
the RooTooth is Class 1, allowing an optimal range of 100
meters. Connection quality over distance drops slowly and
our tests indicate that adequate connections can be made at
up to 200ft. The number of Bluetooth devices that, in theory,
can be used simultaneously is large, as there are 79 channels
available. Our tests have demonstrated that a single laptop
can easily interact with multiple devices; we tested 5 con-
currently without a reduction in throughput to the individual
Roombas.

Drivers

Figure 3: The architecture of our Python-based software
driver.

We have written two Python layers atop iRobot’s byte-
level API. The lower layer provides full access to the
Roomba’s sensors, speaker, motors, and built-in behaviors.
Our top layer allows for straight-line translation (oddly, not
part of iRobot’s provided API), and it includes our odomet-
ric correction model described in the following section. Fig-
ure 3 summarizes the software architecture; the code itself
is freely available at (Dodds & Tribelhorn 2006).

Throughput
USB polling of the Roomba’s full suite of sensors averages a
throughput around 66Hz; Bluetooth is considerably slower.
A single RooTooth will only peak at 16Hz in Fast Data Mode
and 6Hz in its normal mode. A possible solution to this limit
in bandwidth would be to mount a micro-controller which
reacts to the sensors for stopping quickly and allows higher
level decisions to be made by a computer which would only
send and receive a less rich set of data. In this paper, how-
ever, we maintain focus on the capabilities of the unmodified
Roomba.

Simulation
Building atop these python drivers, James Snow has cre-
ated an interface to the Roomba available within the Python
Robotics (Pyro) toolset. In addition, the Roomba is control-
lable via the player/stage simulator. Although both of these
resources provide a capable and sophisticated interface to all
of the hardware platforms they support, we used a simple,
homegrown simulator for the Roomba as a testbed for our
algorithm implementations. This Python 2D visualizer (de-
picted at right in Figure 6) can emulate the platform’s local
sensing and is packaged with the drivers.

Modeling the Roomba
Odometry

Figure 4: Regressions of translation and rotation yield m,
the robot’s lean for a specific Roomba, named R5. We cre-
ated equations for odometric distance and angle from similar
analyses across several robots.

Roombas do provide odometry. Unfortunately, there is
a huge bias in translating left and right turning around the
maximum radius of curvature (ROC) (80◦ vs. −30◦ over

15s at 20cm/s). Our ”RoombaDrive” layer compensates for
this bias by enabling both simple rotation and straight-line
translation. Because the API does not provide straight-line
translation, it is achieved in software by time-slicing left and
right turns at the maximum ROC. This time-slicing parame-
ter is denoted α.

Running several tests of our line driving and turning code
allowed us to extract a motion model. In Figure 4, data
from a single robot is depicted. Linear regressions of raw
data versus actual position in linear translation and rotation
shows that the slope m is constant between line driving and
turning. We ran the tests over multiple robots of different
batches and found this correlation to be consistent.

Equations for distance and angle (r, θ) as functions of the
robots’ raw data and the robot specific α become the follow-
ing:

r =
distance

10.0
∗ (0.705 + α− α2)− 5 (1)

θ =
angle

129.0
∗ (0.705 + α− α2) (2)

Figure 5: Comparison of basic kinematic odometry, veloc-
ity estimated odometry, and our modeled odometry on two
robots from separate batches. For this sample N = 18.

Results from testing of our motion model against basic
odometry and velocity-based odometry are illustrated in Fig-
ure 5. The sampled error for naive odometry is σr = 11.5%
and σθ = 12.4% which depends strongly on the specific
robot. Integrating the commanded velocities to estimate po-
sition results in even more significant errors, as shown. Our
corrected model has error of σr = 2.9% and σθ = 6.1%,
which significantly improves odometric accuracy.

Local Sensing
The Roomba has only local sensing in the form of bump and
IR sensors. When the Roomba bumps it will regularly slip as
it pushes forward and this causes the robot to rotate. This ro-
tation is not measured by the odometry and as such must be
compensated by increasing error within the software. The IR
sensors can detect virtual walls (provided with the Roomba)
and cliffs.

The bump sensors have four states which result from a left
and right sensor attached to a rigid bumper. These states are
left, right, front, or no bump. The collision angle that will
produce a front bump varies with the sampling rate. For an
ideal situation, bumps within the cone of ±20◦ cause both
sensors to trigger (due to bumper rigidity). However at sam-
pling rates of around 4Hz or less, a front bump will be de-
tected at a range of ±60◦ or more. If the response to this
bump is similarly slow, the robot will usually slip and ac-
tually end its motion facing the wall which can adversely
effect odometry. Our modeled odometry, however, does not
suffer as much as the uncorrected odometry.

The virtual wall is difficult to use for MCL and other al-
gorithms as a single wall of many because the uncertainty
of hitting the cone of the virtual wall is rather large espe-
cially compared to the ground truth of a physical wall bump.
Rather than model the virtual wall explicitly, however, the
algorithms that follow simply incorporated additional uncer-
tainty into their probabilistic motion models.

Algorithmic Validation: MCL
Monte Carlo Localization (MCL) is a probabilistic estima-
tion of pose in a known map that combines range sensing
and odometry. Using only the local sensing of the Roomba
we were able to implement and demonstrate successful pose
tracking at AAAI 2006. An example of a successful MCL
run is shown in Figure 6.

Figure 6: Recorded at AAAI 2006, this shows a Roomba
successfully localizing itself using MCL. In the middle im-
age note that the wall in question is actually a virtual wall,
encountered as an observer paused to watch the action.

Our video recorded at AAAI and initial runs used the fol-
lowing model of uniform error in motion: 35% in distance

Figure 7: A successful in lab run of MCL where the most
probable pose (blue dot) was identical to the ground truth
pose.

and 25% in angle which compensated for the inaccuracy
of the naive kinematic model. Recall that when driving in
large arcs the Roomba’s actual motion deviates substantially
from its odometric readings. Thus, these large uniform er-
rors were necessary to create a sufficiently robust cloud of
particles for MCL. We used 300 particles to successfully lo-
calize the Roomba.

Straight-line translation, in general, is more useful than
this arc-based motion model both for pedagogical reasons
(specifying line segments to travel is a natural starting point
for robot programming) and because of the reductions in
odometric uncertainty shown in Figure 5. Thus, it was with
this improvement to the raw, API-provided driving ability
that we sought to implement mapping on the Roomba. We
did this in two ways. The first was by adding vision to
the system’s capabilities through an onboard laptop and an
attached webcamera. The second approach used only the
built-in bump sensor along with strong assumptions about
the Roomba’s environment.

Adding Vision
Mapping is a logical algorithm to try after localization, but
the most popular mapping algorithms today require richer
sensing than the Roomba provides. We chose to mount a lap-
top on the Roomba with velcro to attain onboard processing
for vision processing. This setup with Apple’s iSight camera
can be seen in Figure 8.

Using the iSight, we discovered that the iSight provides
pixels in YUV 4:2:2 natively. YUV space is not an absolute
color space; it is only a lossy encoding of RGB data. The
actual data is 16 bits per pixel providing either a set of UY
or VY values for that pixel. This loss in color information is
generally undetectable by the human eye because our eyes
are more sensitive to the luminance (Y) than differences in
color (UV). Initially we converted the YUV values to RGB,
but color segmentation does not improve with RGB thresh-
olding. Thus, to save on computation we reverted to using
the raw YUV values. However, for human interaction, e.g.,
drawing atop the image, YUV/RGB conversion is still re-

Figure 8: Mounting a laptop and the iSight on the Roomba.

quired:

Y = ((66R + 129G + 25B + 128) >> 8) + 16

U = ((−38R− 74G + 112B + 128) >> 8) + 128

V = ((112R− 94G− 18B + 128) >> 8) + 128

Using Mac OS X as this project’s primary development
environment, we have devloped a C library that enables ac-
cess to the pixel values provided by the iSight camera (or
any other QuickTime input). Prior work in this area has not
allowed for pixel-level access of values (Heckenberg 2003).

We implemented a set of vision algorithms that find the
largest connected components segmented by color and cal-
culates a set of shape statistics on that object which are used
for classification. For example, segmentation on “red” will
match the teddy bear’s clothing. The data on the segmented
object is in Table 1. Additional information such as the cen-
troid is not listed. These shape statistics are very useful in
identifying objects of the same or similar color. Consider
that a cone would have a measured angle near vertical while
a red strip on the wall would be horizontal. It is also easy to
use the pixel count to eliminate noise by enforcing a mini-
mum size before classifying an object.

The information that this method provides is a good start-
ing point for more complex online algorithms. In many
cases this data analysis is sufficient for discerning a small
set of known objects.

FastSLAM
We implemented FastSLAM 1.0 with known data corre-
spondence as detailed in Probabilistic Robotics (Thrun, Bur-
gard, & Fox 2005). FastSLAM uses a point-feature tracker,

Shape Statistic Value
ellipse angle 23.1◦
major axis 76.5
minor axis 45.5
pixel count 1918
roundness 0.42

color “red”

Table 1: Shape statistic values for finding the bear.

Figure 9: The largest connected component of teddy bear t-
shirt red is colored in blue. The shape statistics are listed in
Table 1.

so vision is a natural fit. We created visual landmarks by
placing construction paper on the walls as seen in Figure 10.
In a joysticked run of the robot, the vision system correctly
identified and plotted the uncertainty of the four landmarks
as shown in Figure 11. The loop closure that occurs when
the red landmark is seen for a second time significantly re-
duces that feature’s pose uncertainty.

Bump-only Roomba Mapping
Mapping without vision on the Roomba presents a stiff chal-
lenge because of the platform’s lack of built-in range sens-
ing. We have designed a preliminary set of mapping al-
gorithms using only local bump sensing and odometry. To
compensate for this impoverished sensory data, we assume
strong prior knowledge about the environment:

• that it consists only of straight-line walls.

• that all of those wall segments are either parallel or per-
pendicular.

Figure 10: The final position of the Roomba when it closes
the loop.

These assumptions allow several interpretations of the in-
coming data, e.g., line fitting to raw odometry of the bumps.
Our results from this algorithm and others are presented in
(Tribelhorn & Dodds 2007).

Educational Trials
The Roomba was used as the basis for several assignments
in a CS1/CS2 course sequence taught at Chatham College,
an all-women’s institution in Pittsburgh, PA. Low cost was
one reason for choosing the Roomba. The more compelling
reason, however, was that the Roomba, as a simple serial
peripheral, integrated effortlessly into the environment in
which these courses were already being taught.

This CS1/CS2 trial included an external assessment effort
to determine the extent to which the Roomba (and robots in
general) affected students’ feelings and capabilities in learn-
ing introductory computer science. The results have shown
that the physical interactions had a significant impact. One
student indicated that the impact was intellectual:

Like when you’re just working on the screen it’s like
‘oh the little dot is moving.’ When you’re working with
the actual thing [the Roomba], you’re like okay, prob-
lem solving. Because it’s a lot easier to solve the prob-
lem if it’s 3D, in front of you, and you can see exactly
what the problem is.

Another student described the robot’s impact in affective
terms: “Playing with the Roomba made it a lot more fun.”

A third student pointed to overcoming some of the
Roomba’s idiosyncracies when asked Which activities do
you think have been most useful this semester in making you
a better programmer?:

I would say that probably working with the Roomba
definitely just because the first day we worked with it
we were trying to get it to go in a straight line because
it has like a natural curve to it so it doesn’t go straight.
Overall, the Roomba added excitement to the classes, and

it provided hands-on, task-specific applications for the pro-
gramming concepts covered. Moreover, the Roomba did not

Figure 11: A closed loop run of vision-based FastSLAM.

add the time-intensive overhead of constructing and main-
taining Lego-based or other hand-built platforms, nor did it
require us to change the programming language or OS on
which the class was based. In contrast to many of the other
platforms in Figure 12, the Roomba can be used to support
an existing CS and AI curriculum, rather than requiring a
curriculum designed especially for it.

Perspective
These extensions and applications of the Roomba only
scratch the surface of what is possible, enabling users an
inexpensive basis on which to design systems that run “with
our initiation, but without our intervention.” (Brooks 1986)
As this paper demonstrates, even the ubiquitous, unmodified
Roomba platform can support far more than the vacuuming
tasks for which it was designed. As an educational resource,
the Roomba is pedagogically scalable: it is as suitable for
reinforcing beginning programming concepts as it is for ex-
ploring algorithms of current interest to the robotics commu-
nity. As a research resource, the Roomba empowers inves-
tigators who want to use robots, rather than build them. For
example, it offers researchers involved in the fields of multi-
agent systems, HRI, or many other subfields of AI and CS an
off-the-shelf means to embody and test their work without
having to spend time constructing or modifying hardware.

Ultimately, the Roomba offers the robotics community
both an example of the widespread commercial viability of
autonomous robots and a novel resource we can leverage
toward our educational and research goals. It heralds the
advent of robotic peripherals that can take advantage of all
of the computing power and cost-efficiency of today’s com-
modity laptop and desktop machines. This paper provides an
improved odometric model of the Roomba, some strategies

Platform Cost Sensing
Lego RCX $200 Bmp,Lt
Roomba $230 Vis,Mic,Bmp,Enc,WL

Lego NXT $250 Bmp,Lt,Son,Enc,WL
Intellibrain $300 Bmp,Lt,IR,a2d,WL
PalmPRK $325 IR,a2d

HandyBoard $350 Bmp,Lt,IR,a2d
KIPR XBC $500 Vis,Bmp,Lt,IR,Enc
UMN eRosi $500 Lt,Enc,Pyr,WL

HandyBoard2 $750 Vis,Bmp,Lt,IR,Enc,a2d,WL
Hemisson $780 Lt,IR,WL

Garcia $1725 Vis,IR,Enc,WL
Khepera $2000 IR,Enc
AIBO $2000 Vis,Mic,Bmp,Enc,WL

Figure 12: A comparison of several inexpensive robot plat-
forms/controllers, their costs, and their standard set of sens-
ing capabilities. Legend: Bmp, bump or tactile sensing;
Lt, light sensing; Vis, vision; Mic, microphone; Enc, en-
coders or odometry; WL, wireless communication with a
controlling PC; a2d, general analog/digital inputs; IR, in-
frared range sensing; Pyr, heat or flame sensing;

for handling its idiosyncrasies, and and an initial assessment
of the Roomba’s capabilities. We believe it won’t be long
before there emerge a wide variety of applications of this
modest platform.

Acknowledgments
This work was made possible by funds from NSF DUE
#0536173, as well as funding and resources from Harvey
Mudd College and Chatham College.

References
Brooks, R. 1986. Achieving Artificial Intelligence through Build-
ing Robots. Technical report, Massachusetts Institute of Technol-
ogy, Cambridge, MA, AI-Memo 899.
Dodds, Z., and Tribelhorn, B. 2006. Erdos.
http://www.cs.hmc.edu/∼dodds/erdos.
Domnitcheva, S. 2004. Smart vacuum cleaner - an autonomous
location-aware cleaning device.
Gerkey, B. 2006. Mapping with the iRobot Roomba.
http://www.ai.sri.com/∼gerkey/roomba/index.html.
Heckenberg, D. 2003. Using Mac OS X for Real-Time Image
Processing. In Proceedings of the Apple University Consortium
Conference.
2006. Roomba SCI specification. www.irobot.com/hacker.
Mecklenburg, P. 2005. Roomba SLAM.
http://www.cs.unc.edu/∼prm/roomba/roomba-slam.pdf.
2006. RoombaDevTools. www.roombadevtools.com.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic Robotics.
MIT Press.
Torrone, P. 2006. Roomba Tronic. Make Magazine Volume 06:
Robots.
Tribelhorn, B., and Dodds, Z. 2007. Evaluating the Roomba: A
low-cost, ubiquitous platform for robotics research and education.
Submission to ICRA 2007.

