Q)

A

\}
@ O

KISS Institute for
Practical Robotics

O

)
~N

Handy Board and | C Documentation

1818 W Lindsey
Bld D, Suite 100
Norman, OK 73069
http://www.Kipr.org

Handy Board and | C Documentation

KISS Institute for Practical Robotics

info@kipr.org

©1997, 1998, 2000 KISS Institute

This document is targeted to the versions of the Handy Board and Interactive C distributed by
KISS Institute. These materials are modified by KISS Institute, and therefore materials gathered
from other sources may not work as described in this manual.

This document contains portions of the Handy Board Technical Reference © by Fred Martin and
the Interactive C User's Guide v0.9 © 1997 by Anne Wright, Randy Sargent and Carl Witty.
Minor editing has been done to make sure these documents reflect the piecesin your kit. The
original documents are available in their entirety from the websites listed below. Interactive C
User's Guide

Updates to your version of |C may be downloaded from http://www.newtonlabs.com/ic

More information about the Handy Board can be found at
http://Ics.www.media mit.edu/groups/el/projects/handy-board/

TABLE OF CONTENTS

P A RT S LIST ittt ettt st et b e et e e ebe s eebe s besesbese et e e ebeseebesEese e bansebeaeebeshesesbeneebeReebeneebe e eaeseesesbeneeteneetennenis 4
THE HANDY BOARD ...cuviiitiiiti ettt et te st e e be et e s e tesaese s bese st e e ebesaebesbese st aneebesesesbesesbansateseseseesesbesesesesbenestenseseseeseas 5
L@ U TSy 7Y =3 ISP 9
BALLErY MAINTENGAICE. ...ttt b bbb h et b et 9
SENSORS & EFFECTORS......cteuttiirtereeteseeteseesesteesseseeseseeaeseesessenesseseeseseeseseeaesbeneebeaeebeseesesbene s b et ebeaeebeseeseseanesbenessenenseennas 10
B OO S, ettt sttt s a et b e ae b e e b et be s ReRe e beRe b et et e e saebeneebeteaestenesbeneebeeetenteresrenea 10
S 150 SO SSRP 11
| C PROGRAMMERS IMANUALccutteuiiteietestetestesesteesteseesessesestesessessssessessstesessansssessassseesestassssansnsessesessesestansasessesesensessesens 14
INTRODUGCTIONviutcuiteieteseetestesestesesteseesessesestesestesessessesessesestanessessesessesestasessansasesseseseesesbansesansnsessetessesessesessenessensesessesens 14
GETTING STARTED ...ucititeueteuesteesteseeteseeseseesessasesseseeseseesestenessenesseaseseseeseseenesbaneasesseseseesesbenestenseseseeseseesessesessenessanessensasas 15
Getting SArted UNAET UNIX ..ottt 15
Getting SArted ONTNEIMAC. ..ot 17
Getting Started UNAEr WINCOWS.........c.cueuiiiiiiiienere sttt 17
L 1T [ST PUTSSN 18
[C COMMIANGS......cueetiieieteiteesteee et e te st ete st e e e beste e ete st esesbessebesaeseebe s eseebesaebesbensebe b eneebeseestesesbenebeneebenseteseesessenesbennans 18
LINE EGIING .ttt 19
OSSP 20
FEUNCEION. ..ttt sttt st be b e se e beseebe e ebesseseebeseebeneebe s ebeesese et sassbensebessesesbesesbeneabeneeteseeseseeneas 20
ThE MAIN() FUNCHION......c.oiiiiiiiiie ettt bbb b bbbttt bbb b bbb bbb bbbt bbbt 20
[C VERSUS STANDARD C....ootiiiteieiertetsteseeteseeaeste e s besesaeseesesbesessenesbeseeseseesesbeme st eaeebeseeaesbene et e e ebeseebesbenesbentebaneabaneesesennens 20
A QUICK © TUTORIAL «ucteutetetetesteeetesesteseeaeseeaesteneesesesseseeaesbanesseseeseseeaeseeaesbeaeebeaeeaeseenesbeneebeaeebeseenesbenesbenesbeneasensesesennens 21
7N N O 1= = 0 5 TSRS 23
VAITADIES. ...ttt et st s e ettt e s e ebesbeae s b e e et e seebeseenesbeneebenen saebeneebeneebesaetesteneebeneebeteresreneas 23
L0 = T 5SSO 25
(D2 2)Y 1< TP 26
POINEEL ...ttt st st e et s e ebe s beae b eae et e eebeseebesEeReebene et eeebeesteaeetentebeteaestenebeneebeneeteateresrenea 27
ATTAYS ... h R e R E R e R SRR R R e e R e R e R e R e R e b e e 30
SXPUCIUI Sttt ettt ettt ettt et e e st e s e se s st e sesseeaeeseeseasesaeeseeseeaeeaeeseeseeReeReeReeReeReeRease s aase st e s s e st e e e e e te s e santeteteeatenes 32
Complex INitialiZation EXAMPIES ...t e 33
STATEMENTS AND EXPRESSIONScitiiiuiieuesteertesesteseesestesestesessesessesesseseesessanessessesesseseseenessansssessasessesessanessensesessesessnses 34
(@07 = (o TSSOSO S PP RPO 34
Assignment Operators and EXPIrESSIONS.........ccourrriririerereieetieeresesesessesesesesese s s s seseseseses s ss s st ssssssssssssssssssnes 36
INcrement and DECTEMENE OPELOIS.......couvurerureruerireeerterirere e seeses e esee e b bbb b st e e e st b bbb e s e neen 36
DAta ACCESS OPEI BLOI'S ... eviueeeeesereeresesesresesess st s st se et sser e st se s E e st se b e s e s e ebese R R eae e e b et ans e st s e b e st st naer e e nenneres e e e 36
Precedence and Order Of EVAIUALION............ccouiieiiiiieice ettt sttt st st e e aeeaessn e sesbe e ebesaenesaeneas 37
CONTROL FLOW ...ttt ettt sttt b et b e se bt s eeae st e st st et e b e aeebe s £ esesEeae b e e ebeeeeb e sEene s Eene b et e b e st eb et eeeneeaesbenesbenenbensenas 38
SALEMENES QNG BIOCKS..... ..ottt sttt s b s et e s e et e st ebe s beseebe s b ene et e e ebeseenestesesteneebennnas 38
[Tl Bttt ettt ettt ettt ettt et e et e e he e ehe et ehe et eAeete s ebe s eAeteAebeehe e eAesteaebeneebeneebetebeseeresreneetennans 38
LAY 1 T OO O OO R TR 39
0] PR 39
BIEAK......cuiiteietiieete ettt ettt sttt sttt a bbb s beae b et b e e ebeeReAeebeaeebe et eateheeaeReebesteneebenteteteaestenebeneebeeetesteresrenea 39
L CD SCREEN PRINTING ...uctteuerutrteuestesestenessesessesessessesessanessessassseesessesessensasesssssssessssenessensssessessssesessesessensasessesensesassesessasens 39
PIINTING EXAMPIES. ...ttt bbb 39

Formatting COmMMENT SUMITIIYcueueveueueeeieeeeeetsesetesesese s sb bbb ettt e bbb bbb 40

PECTAI INOLES.....ee ettt ettt b bbb bbbttt 41
PREPROCESSORvvtttettetetetesesetetetebetebebebesesebebebebebebebebebebebebeb et e b et e b et eb et ebebebebeb et et et et ebebebebera 41
PreprOCESSON IMIACIOS.......c.eueiiieeiee e e e s e b s e a e s e bbb e n e e 42
Conditional COMPITALIONcoiiriririierirre et 43
Comparison With FEgUIAr C PrePrOCESSOIS.cueuueutttrtreresesseseteseseet st st se ettt b e st st st se e bbbt b e 43
THE TC LIBRARY FILE .ottt sttt sttt ettt e b e Rt e et e ettt n et n s 44
L@ 8111810 @011 o IO 45
SENISOE TNPUL. ...ttt et R e e b e bt e R b e e b s R AR Rt R Rt p R bt n s 46
THME COMITIANGS.vcvvtteteeeteies ettt se et et b bbb bbb b s esese e e e sE 4 e 4 e 4 e e 8 e 8 E e b b e bbb e b b eb b e b e s e b e b bbb e b e b e b ebebebeb et et et ebebenas 50
TOME FUNCLIONS. ...ttt b bbb bbbt E 42408 E e h bbb bbb bbb b bbb bbb b e b e bt ebebebebebebena 51
Menuing and DiagNOStiCS FUNCLIONS.........c.ui ittt 52
IVTULTISTASKING ..ot e e e e E e b e R R e e b e e b e se b e e s e a e e e e n e e e seene s 53
L@ Y= Y = T TS 53
Creating NEW PrOCESSES.......cocitierireeieieiete ittt ettt sttt e bbb bbb bbbttt et e ittt 54
DESIIOYING PrOCESSES......c.cutueuertrererereseseseseesesesetestets s esea ettt e e e b bbb bbb b e st Rttt e e e b e st 55
Process Management COMIMIBNGS..........oueueueueueueuietetetiesttesesesese st b bbbt e bbb 56
Process Management Library FUNCHIONS..........c.c.iiiiceeceenesiss st 56
FLOATING POINT FUNCTIONS......cctetetetetetetetete it tetete bbb b bbbttt eb bbb b bbbt et ebebebebebebebebebebebebeb et et et ebebebeb et et et ebebebebebena 56
MEMORY ACCESS FUNCTIONSvttetetetetetetetetetesetetetesebebesetetesebebebebebebebebebebeb et et et ebebebebebebeb et et et ebebebebebebebebebebebebebeberatenas 57
ERROR HANDLING ...ttt st e bbb s bbb e e b b e e e e n e e e 58
COMPI B THMIE BN T OIS ottt bbb bbb bae e 58
RUNM-TIME EFT OIS .ttt 58
BINARY PROGRAMS......ootiiitiiiti sttt et e bbb e s s h et R e e b e e b se s s e b e e b e e e e n e e neseene e 60
ThE BINAIY SOUMCE FlE.......eieiiiiie ittt bbb bbbt b bbb bbb b bbbttt b bt 60
INtEr rUPt-DriveNn BiNAry PrOGIaMScociiiierieueietettetertresisesee e seses et b b st e s s bbb neen 62
The BINAry ODJECE FilE.... ..ttt bbb bbbt eb bbb bbb bbb b b bbb bt 66
LOAAING AN TCH FIlE.ceie bbb 66
Passing Array PoINtersto @ BiNary PrOgram.........ooccceeieinnnisieeieieeesese s 66
[C FILE FORMATS AND IMANAGEMENT ...cvettutttereieses st sesse s st s s et s s st sa s st se st e b st ser bt se b n et e nen et e nner s 67
(O3 (070 =T 0 £ ST PP SR PTT TSP 67
LIRS =TT 67
File and FUNCLION MANAGEMENT ..ottt bbb 67
CONFIGURING IC UNDER UNIX ..ottt ettt na bt en e n st 68

PartsList

This document deals with the following robot kit parts:

* 1 Handy Board system which includes: Handy Board, charger, charger interface board,

4

serial connection cable (C-8 or DB9 to DB25), board connection cable (RJ-11 on both
ends).

1 analog sensor bag which contains six sensors
1 digital sensor bag which contains eight digital sensors

2 Effector bags which contain 4 LEGO motors, three servo motors, and 4 motor
connection wires.

Over 1600 pieces of assorted LEGO and DACTA building pieces
| C Software disk and activation code

This Documentation

TheHandy Board

Specifications

The Handy Board features:

52-pin Motorola 6811 microprocessor with system clock at 2 MHz.
32K of battery-backed CMOS static RAM.

two L293D chips capable of driving four DC motors.

16 x 2 character LCD screen.

two user-programmable buttons, one knob, and piezo beeper.
powered header inputs:

* 9with pullup resistirs for analog sensors

o 8with pullup resistors for digital sensors

» 7 floating for analog sensors

internal 9.6v nicad battery with built-in recharging circuit.

* Pre-wired analog sensor (#23) for monitoring battery power

» hardware 38 kHz oscillator and drive transistor for IR output and on-board 38 kHz IR
receiver.

» 8-pin powered connector to 6811 SPI circuit(l Mbaud serial peripheral interface).

* board size of 4.25 x 3.15 inches, designed for acommercial, high grade plastic enclosure
which holds battery pack beneath the board.

g

0
WY

ON | 1| g9 sp
B mobaer— 4} header
14) batte
3)4DC téck)o-
motor ggtputs\ — connecto
indicators (13) user
— knob
- (1
(e%anal:ﬁ
header

,/ /l f‘r
“gutsut)ann (5&‘;22,‘,’,9"/ |

| odha 7.ahdiog ﬁni 1

6) low batte inpUts inputs
()ind':'cator ry! IR(JO ‘sen
wer/rea
7 ficator Y indlcator

The figure above shows alabelled view of the base Handy Board's ports, connectors, inputs, and
outputs. The expansion board is not shown, but is shown in the following photo. Below, each of
these partsis briefly described.

1. Power Switch. The power switch is used to turn the Handy Board on and off. The Handy
Board retains the contents of its memory even when the board is switched off.

2. Computer Connector. Viathis RJ11 connector, the Handy Board attaches to a desktop
computer (using the separate Interface/Charger Board)

6

10.

11.

12.

13.

14.

15.

DC Motor Outputs and Indicators. The Handy Board's four motor outputs are located at this
single 12-pin connector. Each motor output consists of three pins, the motor connectsto the
outer two pins and the center pin is not used. Red and green LEDs indicate motor direction.
From top to bottom, the motor outputs are numbered O to 3.

Start Button. The Start button is used to control the execution of Interactive C programs.
Also, its state may be read under user program control.

Stop Button. The Stop button is used to put the Handy Board into a special bootstrap
download mode. Also, its state may be read under user program control.

Law Battery Indicator. The red Low Battery LED lights when for a brief interval each time
the Handy Board is switched on. If thisLED ison steadily, it indicates that the battery islow
and that the CPU is haited.

PowedReady Indicator. The green Power/Ready LED lights when the Handy Board isin
normal operation, and flashes when the Handy Board is transmitting serial data. If the board
is powered on and thisLED is off, then the Handy Board isin special bootstrap mode.

Digital Inputs. The bank of digital input portsis here. From right to left, the digital inputs are
numbered 7 to 15.

Analog Inputs. The bank of analog input portsis here. From right to left, the analog inputs
are numbered O to 6.

IR Output and Indicator. The infrared output port is here. The red indicator LED lights when
the output is enabled.

IR Input Sensor. the dark green-colored infrared sensor is here.

Analog Expansion Header. The analog expansion header is a1 x4 connector row |located
above analog inputs O to 3.

User Knob. The user knob is atrimmer potentiometer whose value can be read under user
program control.

Battery Trickle-Charge Connector. The battery charge connector is a coaxial powerjack to
accept a12 volt signal for trickle-charging the Handy Board's internal battery.

Charge Indicator. The yellow charge indicator LED lights when the Handy Board is charg-
ing viathe coaxial powerjack.

16. SPI Expansion Header. The SPI expansion header isa 2 x 4 pin jack that allows connection
with the 6811's serial periphera interface circuit. See the CPU and memory schematic
diagram for a pin-out of this connector.

17. LCD Screen. The Handy Board is provided with a 16x2 LCD screen which can display data
under user control.

18. Piezo Beeper. The Handy Board has a simple piezo beeper for generating tones under user
control.

19. Power Expansion Header. The power expansion header is a 1x4 pin jack that provides access
to the unregulated motor power and ground signals.

0. 21020 2200002 T B :

é

S &
- J

4

j; L
[+

P
:é%
&
& o
g 3
2w

' .
e 3 ;
HAND

The photo above shows the full Handyboard as configured by KIPR. Important things to note:
¢ Anaog ports0 & 1 cannot be used
* Analog port 23 is used to monitor the battery level

8

Analog ports 16-22 are floating and can only be used with sensors that have internal pull-up
resistors such as the SHARP range sensor included in your kit

Quick Start

Here are the steps to getting started with the Handy Board and Interactive C:

Connect the Handy Board to the seria port of the host computer, using the separate Serial
Interface board. The Serial Interface board connects to the host computer using a standard
modem cable; the Handy Board connects to the Serial Interface using a standard 4-wire
telephone cable.

Put the Handy Board into bootstrap download mode, by holding down the STOP button
while turning on system power. The pair of LED's by the two push buttons should light up,
and then turn off. When power is on and both of the LED's are off, the Handy Board isin
download mode.

Run the appropriate downloader for the host computer platform, and download the file
pcodehb.s19. (on Mac & Windows systems thisis done through IC 3.1).

Turn the Handy Board off and then on, and the Interactive C welcome message should
appear on the Handy Board's LCD screen.

Run Interactive C.

Battery Maintenance

The Handy Board has a 9.6v, 600 mA battery pack consisting of eight AA-cell nickel-cadmium
rechargeable batteries.

Battery Charging

There are three ways to charge the internal battery:

1. Adapter plugged directly into the HB. Just plug the adapter into the power jack on the
HB, and the yellow "CHARGE" LED on the HB will light. Thisis atrickle-charge mode,
which means that (1) the Handy Board will fully charge in about 12 to 14 hours, and (2)
the HB may be left in this mode indefinitely.

2. Adapter plugged into the Serial Interface/Battery Charger Board; HB connected via
telephone wire; "NORMAL CHARGE" mode selected. The yellow "CHARGE" LED on
the interface board will light. Thisis atrickle-charge mode, which means that(l) the
Handy Board will fully charge in about 12 to 14 hours, and (2) the HB may be left in this
mode indefinitely.

3. Adapter plugged into the Serial Interface/Battery Charger Board; HB connected via
telephone wire; "ZAP CHARGE" mode selected. The yellow "CHARGE" LED on the
interface board will not light. The ZAP CHARGE will fully charge the HB's battery in
just 3 hours, after which time the battery will become warm and it should be removed
from charge or placed into either of the two trickle-charge modes. Do not leave the HB in
ZAP mode unattended!

When using one of the trickle-charge modes, the Handy Board itself should be turned off so that
the charge current goes toward charging the battery and not simply running the board, if the
board isin usein thismode, very little actual charging will occur. In Zap charge, there is enough
charge current to operate the board and charge the batteries at the same time (assuming that the
board is not driving motors or other external |oads).

Sensors & Effectors

This document describes the sensors and effectors included with your kit. Reference numbersin
[] mentioned below refer to the numbered items on Handy Board Figure.

Effectors:

The LEGO motors included with your kit must each be mated with a motor wire. The motor wire
looks like a black 2x2 LEGO plate with a black wire coming out. The plate fitsinto the motor
under or over the metal contacts on the motor (depending on the motor type). The plug end of the
wire plugs into the DC motor outputs [3]) on the left front edge of the handy board. Each motor
occupies three holes on the output header. Make sure that a motor is plugged into afull triplet,
and is not displaced by one or two holes. The plug on the motors is symmetrical and can be
inserted in either orientation. The orientation will effect which direction the motor rotates for a
given command. The correct orientation depends on the application you choose, so some
experimentation is needed. These motors can be started using the forward fd(n); backward bk(n);
or desired speed motor(n, s); functions. For these functions, nis a number or avariable with a

10

value between 0 and 3 indicating the motor number triplet in which the motor plug has been
inserted. In the last function, s represents the desired speed of the motor in the range of -100 to
+100. Motors may be halted by using either off(n); motor(n, 0); or turning all the motors off with
a0();. There are three type of LEGO motors. The red motor is low torque but has already been
geared to aslow speed. The gray & black motor is high torque and high speed. It has some
gearing built in, but additional gearing will be needed for most tasks. The gray motors turn quite
fast, but have very little torque. In order to move arobot, they need to be geared usually at least
20:1. It isnot unusual to have gear ratios of 200:1 on these motors.

The servo motors have athree pin female connector. They plug onto the triplets of pinsaong the
left side of the expansion board (see photo). Normally the servo is turned on in the main routine
and left on for the duration of the program. It can be turned off to save battery power, however
the servo can be back-driven quite easily when it is unpowered. The servo motor can turn
approximately 180 degrees.

The Expansion Board provides outputs for six servo motors, numbered from O to 5. The
following function is used to enable and disable the servo control signals:

i nit_expbd_servos(1); /*turnson the servo power */
i nit_expbd_servos(0); /* turnsoff the servo power */
The servos are turned off every time the Handy board is reset.

Six global variables are provided for controlling the position of the six servo motors. These
globalsarenamed: servoO, servol, servo2, servo3, servo4, and servob5,
for servo outputs O through 5 respectively. When the Expansion Board servo drivers are loaded,
these variables are defined as globals in the Interactive C environment. Modify these globals
with simple assignment statements; e.g., ser vo3= 1500;

The values determine the length of the timing pulse provided to each servo, which in turn
corresponds to arotational position of the servo motor. Valid values range from O to about 4000.
The servo isnot a LEGO part, and so it may be necessary to hot glue or epoxy a piece of LEGO
to the body of the servo, and one piece to the actuator arm of the servo, in order to connect it to
the rest of your robot.

Sensors:

Your kit includes avariety of analog and digital sensors. Certain applications of the sensors
require a specific port to be used. Those are mentioned below. To read the sensor value plugged

11

into an analog port [9], call the function analog(p); where p refers to the analog port number (2-
6, 16-31). To read avalue from a sensor plugged into adigital port [8], use the function
digital(g); where qisthedigital port number (7 through 15). Analog ports return a value of
approximately 255 if the connection is open, and a value of near O if the connection is closed.
Digital ports return avalue of 0 is the connectionisopen and 1 if it is closed. Y our software can
of course invert or change these numbers.

In general, it will probably not be necessary to use all the sensors for most applications. If you
find that you need alot of sensors, you may find it necessary to lightly sand the sides of the
"handle" part of the plugs on the sensors so that they can more easily fit next to one another.

7

é Y our kit includes three photo-diodes. These are analog sensors that return alow
value when exposed to light, and a higher value when less light strikes them . These cells are
quite sensitive to light, and have awide field of view. To derive any directional information out
of them, they must be shielded. B tape or aluminum foil are good materials for constructing a
light shade. Be sure to cover the back of the sensor as well. By using two or three of these
sensors you can easily have your robot orient itself with respect to a point light source. Photo
diodes should only be used in in analog ports 2-6.

Y ou have two IR reflectance sensors in the kit. These sensors contain an IR
emitting diode as well as an IR detector. Both the emitter and the detector face in the same
direction. If the sensor is pointed at nothing, it returns a high value. If there is something nearby
that will reflect the IR light, then the value decreases. These sensors have an active range of
approximately 2 cm. The actual range depends on the reflectance and size of the object being
detected. These sensors are commonly used for table edge detection, black or white line
following, etc. . Reflectance sensors should only be used in in analog ports 2-6.

y

&

Your kit has 1 SHARP range sensor. This sensor can only be used in analog
ports 16-22. This sensor measures the distance to the object in front of it. Its maximum range is

12

approximately 30 inches. Closer than 6 inches the values returned will be incorrect. The larger
the value the closer the object (until about 6 inches when the returned values starts to decrease
again). Typical valuesfor this sensor are 10 for 30 inches and 130 for six inches.

¥ 4

Your kit has two small break beam sensors. Thisisadigital sensor that
uses an IR emitter and detector facing one another to detect when there is an opague object in the
slot. The most common use of this sensor is as an encoder sensor. In this use, awheel with holes,
or agear ispositioned so that asit rotates, it will cycle the sensor on and off. The software
supports two encoders; encoder O isread from digital port 7; encoder 1 isread from digital port
8. The encoder software is accessed by the following functions: enable_encoder(n);
disable_encoder(n); read_encoder(n); reset_encoder(n); In all of these functions, n is the encoder
number (either O or 1). The enable function turns the encoder on. Note that this should only be
done once for each encoder -- enabling an encoder multiple times without first disabling it can
cause your system to crash. Once an encoder is enabled, the read function returns how many
times the encoder sensor has turned on and off. The reset function changes the count to O.

R ———— - f r
- ‘

-

H‘ The KIPR robot kit contains severa of
these digital contact sensors. All of these sensors return a 0 when untouched and a1 when
activated. All the switches require only a dlight force to activate them. The lever switchis
activated when the lever is pushed downward. The post switch is activated when the post is
pushed in toward the base, or in any sideways direction. The small button switch is activated

when the button is pushed in towards the body of the switch. These sensors are most commonly
used as part of abumper system or as limit switches for an actuator.

Y our Handy Board has three more sensors that are built in. The first is the knob [13] located on
the right side of the board. This knob is a potentiometer that returns a value between 0 and 255
depending on its orientation. This can be used as a gain control or user setting in your program.
The function knob(); returns the current value of the knob setting. There are also two digital
buttons start [4] and stop [5]. The functions start(); and stop(); return O if the button is not being
pushed and 1 if itis.

13

| C Programmers Manual

| ntroduction

Interactive C (IC for short) is a C language consisting of a compiler (with interactive command-
line compilation and debugging) and a run-time machine language module. 1C implements a
subset of C including control structures (f or, whi | e, i f, el se), local and global variables,
arrays, pointers, structures, 16-bit and 32-bit integers, and 32-bit floating point numbers.

|C works by compiling into pseudo-code for a custom stack machine, rather than compiling
directly into native code for a particular processor. This pseudo-code (or p-code) is then
interpreted by the run-time machine language program. This unusual approach to compiler
design allows IC to offer the following design tradeoffs:

I nter preted execution that allows run-time error checking. For example, IC does array
bounds checking at run-time to protect against some programming errors.

Ease of design. Writing acompiler for a stack machine is significantly easier than
writing one for atypical processor. Since IC's p-code is machine-independent, porting IC
to another processor entails rewriting the p-code interpreter, rather than changing the
compiler.

Small object code. Stack machine code tends to be smaller than a native code
representation.

M ulti-tasking. Because the pseudo-code is fully stack-based, a process's state is defined
solely by its stack and its program counter. It is thus easy to task-switch simply by
loading a new stack pointer and program counter. This task-switching is handled by the
run-time module, not by the compiler.

Since IC's ultimate performance is limited by the fact that its output p-code isinterpreted, these
advantages are taken at the expense of raw execution speed.

The current version of |C was designed and implemented by Randy Sargent, Anne
Wright, and Carl Witty, with the assistance of Fred Martin. As of thiswriting, there are

14

many related 6811 systemsin use: the 6.270 LEGO Robot Controller Board (Rev 2.21:
1994, Rev 2.2: 1993, Rev 2.1: 1992, Rev 2.0: 1991), the Handy Board (1995), the Rug
Warrior (1993), and the Sensor Robot (1991). This document currently specifically
cover s the Handy Board, but much of this manual is applicableto all platforms.

Getting Started

IC runs on severa different platforms (currently UNIX, Mac, and Win32 (Windows 95 and
Windows NT)). These versions of |C are compatible with each other, but have different user
interfaces. Please see the "Getting Started" section for the version you are using.

Getting Started under UNIX

Y ou should have afilei c_machi ne_3. 1. t ar. Z, where machine is your machine type (for
example,ic_linux_3.1.tar.Zoric_sparc_sunos_3. 1. tar.Z). (Theversion number may be
different.) For clarity, | will continue this example withi c_I i nux_3. 1. tar. z; replace filenames
as appropriate.

Type the following commands:

®* unconpress ic_linux_3.1.tar.Z
o tarxvfic_linux_3.1.tar

At this point, you should have adirectory i c_I i nux_3. 1 with subdirectoriesbi n and | i bs. The
next step isto put these directoriesin their final resting place. If you have privileges on your
machine, the best thing is probably to put the binariesin/ usr /1 ocal / bi n and the librariesin
/usr/local /1ib/ic.(Thebinaries come configured to expect librariesin this location).
Otherwise, if you want to put the binaries and libraries somewhere else (such asin your home
directory), you'll need to re-configure thei c and dI executables (see section Configuring IC
under UNIX). Warning: if you're installing a new version of |C over a previous version of IC 3.1
or later, be sure to run the old version and write down the license key and name so that you can
enter the information into your new copy.

Before starting 1C, you will need to know the name of the serial port you intend to use. The
device names vary from system to system. Often, a serial port is set up to not give read and write
permissions to standard users. Occasionally, a serial port is set up to run "getty”, which means
the system thinks a serial terminal (such asaVVT100) is connected, and that users will wish to log
in. If in doubt, you should talk to your local system administrator to help you get started using

15

the serial port.

Here are some typical serial port names, but realize that names sometimes vary even between
different machines of the same architecture, so the following are suggestions for namesto try,
rather than the final answers:

Linux: >/ dev/ttyS0', /dev/ttySl', ..

SPARC running SUnOS: */ dev/ttya', /dev/ttyb'

RS/6000: " / dev/ tty0'

NeXTStation: “/dev/ttya', /dev/ttyb'

DECstation and HP Snake: * / dev/ tty00' , "/ dev/tty01'

Y ou may want to confirm that the serial port works before you try to use IC to talk to aboard, as
it isgood to keep the number of unknowns to one at atime. One way to do thisis to hook the
serial port on your host machine to a serial source that is known to work (for instance, a modem
or another serial port) and runkermit .

Itiscritical to get this step right before you continue. If you have not used serial portson a
UNIX machine before, | highly recommend you find someone more experienced to help you.

Now you should be ready to plug in your board. Refer to the owner's manual of your board for
instructions.

If your board does not have "p-code” loaded, you will have to download the p-code before you
can run IC. (Try turning your board on; if a message appears that starts "1C v3.1", your board
already has p-code loaded, and you can skip this step.) To download p-code, find the appropriate
.s19 filefor your board in/usr/1ocal /1ib/ic (or wherever you placed the library files); this
should be pcode_hb. s19 for the Handy Board, pcode_r w. s19 for the Rug Warrior, or

pcoder 22. s19 for the 6.270 board. Run the dl program that you just installed with the .. s19 file
you'vefound, likedl pcode_hb.s19 -port /dev/cua0 (replace/dev/ cua0 with the serial port
on your machine); follow the instructions that di prints.

At this point you should be ready to runi c. Before you can run it, you'll have to enter alicense
key and namewithi c -confi g (see section Configuring IC under UNIX); you should have
received alicense key when you purchased IC.

Try running |C and typing "2+2"; you should get the response "Returned <int> 4".

16

Getting Started on the Mac

Y ou should have afilenamedi c_mac_3. 1. sea. hgx (the version number may be different). You
can convert thistoi c_mac_3. 1. sea with any of several popular format conversion tools, such as
Compact Pro. Once you havethefilei c_mac_3. 1. sea, SSmply executeiit; it will ask you where
you want to place the Interactive C folder, and then extract the IC filesin that location. Warning:
if you're upgrading from a previous version of IC 3.1 or later, don't delete the old version until
you've run it and written down the license key and name so that you can enter the information
into your new copy.

Plug the board into one of your computer's serial ports, and run IC. Thefirst timeyou run IC, it
will ask you for your license key and name; you should have received a license key when you
purchased IC.

Try turning your board on. If your board hasits "p-code" loaded, a message should come up that
starts"1C v3.1"; if it does not, you will have to reload the p-code. Y ou can do this with the
"Reload pcode..." command (on the File menu); the program will guide you through the steps.

Now you should be ready to use IC. Try running IC and typing "2+2"; you should get the
response "Returned <int> 4".

Getting Started under Windows

Y ou should have afile named i cw31. exe (the version number may be different). CD to the
directory where you want to install IC, and runi cwd1. exe. Thiswill unpack i c. exe and the libs
directory.

Plug the board into one of your computer's serial ports, and run IC. Thefirst timeyou run IC, it
will ask you for your license key and name; you should have received a license key when you
purchased IC.

Try turning your board on. If your board hasits "p-code" loaded, a message should come up that
starts"1C v3.1"; if it does not, you will have to reload the p-code. Y ou can do this with the
"Reload PCode..." command (on the Board menu); the program will guide you through the steps.

Now you should be ready to use IC. Try running IC and typing "2+2"; you should get the
response "Returned <int> 4".

17

Using IC

When IC isrunning and attached to a 6811 system, C expressions, function calls, and IC
commands may be typed at the "C" prompt.

For example, to evaluate the arithmetic expression 1 + 2, type the following:
C1+2

When this expression is typed, it is compiled by the console computer and then downloaded to
the 6811 system for evaluation. The 6811 then evaluates the compiled form and returns the
result, which is printed on the console computer's screen.

To evaluate a series of expressions, create a C block by beginning with an open curly brace { and
ending with aclose curly brace} . The following example creates alocal variablei and prints 10
(thesumof i + 7)tothe6811's LCD screen:

C{int i=3; printf("vd", i+7);}
| C Commands

| C responds to the following commands:

| oad filenane

Load file. The command | oad fi/ename compiles and loads the named file. The board must
be attached for thisto work. IC looks first in the local directory and thenin the IC library
path for files. Several files may be loaded into IC at once, alowing programs to be defined in
multiple files.

unl oad fil enane

Unload file. The command unl oad fi/ enane unloads the named file, and re-downloads
remaining files.

list files
Thecommand1ist files displaysthe names of all files presently loaded into IC.

list globals

Thecommand i st gl obal s displaysthe namesof all currently defined global variables.

list functions

18

Thecommand i st functions displaysthe names of presently defined C functions.

| i st defines

Thecommand i st defines displays the names and values of all currently defined
Ppreprocessor macros.

kill_all
Kill all processes. Thecommandki I | _al | killsall currently running processes.
ps
Print process status. The command ps prints the status of currently running processes.
hel p
Help. The command hel p displays a help screen of 1C commands.
qui t

Quit. The command qui t exits|C. ~c can aso be used.

Line Editing

|C has a built-in line editor and command history, allowing editing and re-use of previously
typed statements and commands. The mnemonics for these functions are based on standard
Emacs control key assignments.

To scan forward and backward in the command history, type ~p or upar r ow for backward, and
~n or downar r ow for forward.

Under Windows, only the functionality described in the rest of this section is not available (only
p, ™n, upar r ow; and downar r oware available). However, normal Windows editing methods can
be used.

Under UNIX, an earlier line in the command history can be retrieved by typing the exclamation
point followed by the first few characters of the line to retrieve, and then the space bar. For
example, if you had previoudly typed the command C> | oad f oo. ¢, thentyping C! 1 o followed
by a space would retrieve thelinec 1 oad f oo.

The following are the keystroke mappings understood by 1C for the Mac and UNIX versions.

19

Key Function
del backwar d del ete char acter
ctrl-d forward del ete character
ctrl-b, back arrow go backward a char acter
ctrl-f ,forward arrow go forward a char acter
ctrl-a go to beginning of line
ctrl-e go to end of line
ctrl-k kill line (fromcursor forward)
ESC- d forward kill word
ESC- DEL backward kill word
up arrow, ctrl-p hi story | ast
down arrow, ctrl -n hi story next

The Mac and UNIX versions of |C do parenthesis-balance-highlighting as expressions are typed.

The main() Function

After functions have been downloaded to the board, they can be invoked from the IC prompt. If
one of the functionsis named mai n() , it will automatically be run when the board is reset.

To reset the board without running the mai n() function (for instance, when hooking the board
back to the computer), hold down the board's st art button (or Escape on a6.270 board) while
pressing reset. The board will reset without running mai n() .

| C versus Standard C

The IC programming language is based loosely on ANSI C. However, there are mgjor
differences.

Many of these differences arise from the desire to have |C be "safer” than standard C. For

20

instance, in IC, array bounds are checked at run time; for this reason, arrays cannot be converted
to pointersin IC. Also, in IC, pointer arithmetic is not allowed.

Other differences are due to the desire that the | C runtime be small and efficient. For instance,
the IC printf function does not understand many of the more exotic formatting options specified
by ANSI C.

Y et other differences are due to the desire that |C be simpler than standard C. Thisis the reason
for the global scope of all declarations.

In the rest of this document, when we refer to "C", the statement applies to both 1C and standard
C. When we wish to specify one or the other, we will refer to either "1C" or "standard C". When
no such qualifiers are present, you should assume that we are talking about IC.

A Quick C Tutorial

Most C programs consist of function definitions and data structures. Here is asimple C program
that defines asingle function, called nai n.

void main() { printf("Hello, worldi\n"); }

All functions must have areturn type. Since mai n does not return avalue, it usesvoi d, the null
type, asits return type. Other typesinclude integers (i nt) and floating point numbers (f | oat).
This function declaration information must precede each function definition.

Immediately following the function declaration is the function's name (in this case, nai n). Next,
in parentheses, are any arguments (or inputs) to the function. mai n has none, but a empty set of
parenthesesis still required.

After the function argumentsis an open curly-brace { . This signifies the start of the actual
function code. Curly-braces signify program blocks, or chunks of code.

Next comes a series of C statements. Statements demand that some action be taken. Our
demonstration program has a single statement, apri nt f (formatted print). Thiswill print the
message "Hel | o, worl d!" to the LCD display. The\ n indicates end-of-line.

Theprintf statement endswith asemicolon (;). All C statements must be ended by a
semicolon. Beginning C programmers commonly make the error of omitting the semicolon that
isrequired at the end of each statement.

The mai n function is ended by the close curly-brace} .

21

Let'slook at an another example to learn some more features of C. The following code defines
the function square, which returns the mathematical square of a number.

int square(int n) { return(n * n); }
The function is declared as typei nt , which meansthat it will return an integer value. Next
comes the function name squar e, followed by its argument list in parentheses. squar e has one

argument, n, which is an integer. Notice how declaring the type of the argument is done similarly
to declaring the type of the function.

When a function has arguments declared, those argument variables are valid within the "scope”
of the function (i.e., they only have meaning within the function's own code). Other functions
may use the same variable names independently.

The code for squar e is contained within the set of curly braces. In fact, it consists of asingle
statement: ther et ur n statement. Ther et ur n statement exits the function and returns the value
of the C expression that followsit (inthiscase"n * n").

Expressions are evaluated according set of precendence rules depending on the various
operations within the expression. In this case, there is only one operation (multiplication),
signified by the"+", so precedence is not an issue.

Let'slook at an example of afunction that performs a function call to the squar e program.

fl oat hypotenuse(int a, int b) { float h; h =

sqrt((float) (square(a) + square(b))); return(h); }

This code demonstrates several more features of C. First, notice that the floating point variable h
is defined at the beginning of the hypot enuse function. In general, whenever anew program
block (indicated by a set of curly braces) is begun, new local variables may be defined.

Thevalue of h isset to theresult of acall tothesqgrt function. It turns out that sqrt isabuilt-in
|C function that takes a floating point number as its argument.

We want to use the squar e function we defined earlier, which returnsits result as an integer. But
the sqrt function requires a floating point argument. We get around this type incompatibility by
coercing the integer sum (square(a) + square(b)) into afloat by preceding it with the
desired type, in parentheses. Thus, the integer sum is made into afloating point number and
passed dlongtosqrt.

The hypot enuse function finishes by returning the value of h.

This concludes the brief C tutorial.

22

Data Objects

Variables and constants are the basic data objectsin a C program. Declarations list the variables
to be used, state what type they are, and may set their initial value.

Variables

Variable names are case-sensitive. The underscore character is alowed and is often used to
enhance the readability of long variable names. C keywordslikei f , whi | e, etc. may not be used
as variable names.

Global variables and functions may not have the same name. In addition, if alocal variableis
named the same as aglobal or afunction, the use of that global or function is prevented within
the scope of the local variable.

Declar ation

In C, variables can be declared at the top level (outside of any curly braces) or at the start of each
block (afunctional unit of code surrounded by curly braces). In general, avariable declaration is
of the form:

<type> <variabl e nane>; or <type> <variable name>=<initialization data>;

InIC, <type>canbeint, long, float, char, Orstruct <struct name>, and determines
the primary type of the variable declared. This form changes somewhat when dealing with
pointer and array declarations, which are explained in alater section, but in general thisisthe
way you declare variables.

L ocal and Global Scopes

If avariableis declared within afunction, or as an argument to a function, its binding islocal,
meaning that the variable has existence only within that function definition.

If avariableisdeclared outside of afunction, itisaglobal variable. It is defined for all functions,
including functions which are defined in files other than the one in which the global variable was
declared.

Variable Initialization

Local and global variables can beinitialized to a value when they are declared. If no
initialization valueis given, the variableisinitialized to zero.

23

All global variable declarations must be initialized to constant values. Local variables may be
initialized to the value of arbitrary expressionsincluding any globals, function calls, function
arguments, or locals which have already been initialized.

Hereis asmall example of how initialized declarations are used.

int i=50; /* declare i as global integer -- initial value 50 */ |ong
j =100L; /* declare j as global long -- initial value 100 */ int foo() {
int x; /* declare x as local integer with initial value 0 */ | ong
y=j; /* declare y as local integer with initial value j */ }

Local variables are initialized whenever the function containing them runs.

Global variables are initialized whenever areset condition occurs. Reset conditions occur when:
1. Codeisdownloaded;
2. Themain() procedureisrun;

3. System hardware reset occurs.

Persistent Global Variables

A special persistent form of global variable, has been implemented for IC. A persistent global
may beinitialized just like any other global, but its value is only initialized when the code is
downloaded and not on any other reset conditions. If no initialization information isincluded for
apersistent its value will be initialized to zero on download, but left unchanged on all other reset
conditions.

To make a persistent global variable, prefix the type specifier with the keyword per si st ent . For
example, the statement

persistent int i=500;

creates aglobal integer calledi with theinitial value 500.

Persistent variables keep their state when the board is turned off and on, when nai n isrun, and
when system reset occurs. Persistent variables will lose their state when code is downloaded as a
result of loading or unloading afile. However, it is possible to read the values of your persistents
inIC if you are still running the same I C session from which the code was downloaded. In this
manner you could read the final values of calibration persistents, for example, and modify the
initial values given to those persistents appropriately.

Persistent variables were created with two applications in mind:

24

» Cadlibration and configuration values that do not need to be re-calculated on every reset
condition.

» Robot learning algorithms that might occur over a period when the robot is turned on and
off.

Constants

Integer Constants

Integers constants may be defined in decimal integer format (e.g., 4053 or - 1), hexadecimal
format using the "ox" prefix (e.g., 0x1f f f), and a non-standard but useful binary format using
the"ob" prefix (e.g., 0b1001001). Octal constants using the zero prefix are not supported.

Long Integer Constants

Long integer constants are created by appending the suffix "1 " or "L" (upper- or lower-case
alphabetic L) to adecimal integer. For example, oL isthe long zero. Either the upper or lower-
case"L" may be used, but upper-case is the convention for readability.

Floating Point Constants

Floating point numbers may use exponential notation (e.g.," 10e3" or "10E3") or may contain a
decimal period. For example, the floating point zero can be givenas™o0. ", " 0. 0", or "0E1", but
not asjust "0". Snce the 6811 has no floating point hardware, floating point operations are
much slower than integer operations, and should be used sparingly.

Charactersand String Constants
Quoted characters return their ASCII value (e.g., ' x').

Character string constants are defined with quotation marks, e.g., "This is a character
string.".

NULL

The special constant NULL has the value of zero and can be assigned to and compared to pointer
or array variables (which will be described in later sections). In general, you cannot convert other
constants to be of a pointer type, so there are many times when NULL can be useful.

For example, in order to check if a pointer has been initialized you could compare its value to

25

NULL and not try to accessits contents if it was NULL. Also, if you had a defined alinked list
type consisting of avalue and a pointer to the next element, you could look for the end of the list
by comparing the next pointer to NULL.

Data Types
|C supports the following data types:
16-bit Integers

16-hit integers are signified by the type indicator i nt . They are signed integers, and may be
valued from -32,768 to +32,767 decimal.

32-bit Integers

32-bit integers are signified by the type indicator | ong. They are signed integers, and may be
valued from -2,147,483,648 to +2,147,483,647 decimal.

32-bit Floating Point Numbers

Floating point numbers are signified by the type indicator f | oat . They have approximately
seven decimal digits of precision and are valued from about 10"-38 to 10"38.

8-bit Characters

Characters are an 8-bit number signified by the type indicator char . A character's value typically
represents a printable symbol using the standard ASCII character code, but thisis not necessary;
characters can be used to refer to arbitrary 8-bit numbers.

Pointers

|C pointers are 16-bit numbers which represent locations in memory. Values in memory can be
manipulated by calculating, passing and dereferencing pointers representing the location where
the information is stored.

Arrays

Arrays are used to store homogenous lists of data (meaning that all the elements of an array have
the same type). Every array has alength which is determined at the time the array is declared.
The data stored in the elements of an array can be set and retrieved in the same manner that other
variables can be.

26

Structures

Structures are used to store non-homogenous but related sets of data. Elements of a structure are
referenced by name instead of number and may be of any supported type. Structures are useful
for organizing related datainto a coherent format, reducing the number of arguments passed to
functions, increasing the effective number of values which can be returned by functions, and
creating complex data representations such as directed graphs and linked lists.

Pointers

The address where avalueis stored in memory is known as the pointer to that value. It is often
useful to deal with pointers to objects, but great care must be taken to insure that the pointers
used at any point in your code really do point to valid objects in memory. Attempts to refer to
invalid memory locations could corrupt your memory. Most computing environments that you
are probably used to return helpful messageslike ™ Segnent ati on Vi ol ati on' or” Bus
Error' on attemptsto accessillegal memory. However, no such safety net exists in the 6.270
system and invalid pointer dereferencing is very likely to go undetected and cause serious
damage to your data, your program, or even the pcode interpreter.

Pointer Safety

In past versions of |C, you could not return pointers from functions or have arrays of pointers. In
order to facilitate the use of structures, these features have been added to the current version.
With this change, the number of opportunities to misuse pointers have increased. However, if
you follow afew simple precautions you should do fine.

First, you should always check that the value of a pointer is not equal to NULL (a specia zero
pointer) before you try to accessit. Variables which are declared to be pointers are initialized to
NULL, so many uninitialized values could be caught this way.

Second, you should never use a pointer to alocal variable in a manner which could cause it to be
accessed after the function in which it was declared terminates. When a function terminates the
space where its values were being stored is recycled. Therefore not only may dereferencing such
pointers return incorrect values, but assigning to those addresses could lead to serious data
corruption. A good way to prevent thisis to never return the address of alocal variable from the
function which declares it and never store those pointersin an object which will live longer than
the function itself (aglobal pointer, array, or struct). Global variables and variables|local to main
will not move once declared and their pointers can be considered to be secure.

27

The type checking done by IC will help prevent many mishaps, but it will not catch al errors, so
be careful.

Pointer Declaration and Use

A variable which is a pointer to an object of a given type is declared in the same manner as a
regular object of that type, but with an extra* in front of the variable name.

The value stored at the location the pointer refersto is accessed by using the * operator before
the expression which calculates the pointer. This process is known as dereferencing.

The address of avariableis calculated by using the & operator before that variable, array element,
or structure element reference.

There are two main differences between how you would use a variable of agiven typeand a
variable declared as a pointer to that type.

For the following explanation, consider X and Xptr as defined as follows:
long X; long *Xptr;

» Space Allocation -- Declaring an object of a given type, as X is of type | ong, allocates the
space needed to store that value. Because an | C long takes four bytes of memory, four
bytes are reserved for the value of X to occupy. However, a pointer like Xpt r does not
have the same amount of space allocated for it that is needed for an object of the type it
points to. Therefore it can only safely refer to space which has aready been allocated for
globals (in a special section of memory reserved for globals) or locals (temporary storage
on the stack).

» Initial Value-- It isaways safe to refer to a non-pointer type, even if it hasn't been
initialized. However pointers have to be specifically assigned to the address of legally
allocated space or to the value of an already initialized pointer before they are safe to use.

So, for example, consider what would happen if the first two statements after X and Xptr were
declared were the following:

X=50L; *Xptr=50L;
Thefirst statement isvalid: it setsthe value of X to 50L. The second statement would be valid if

Xpt r had been properly initialized, but in thiscase it is not. Therefore, this statement would
corrupt memory.

Hereis a sequence of commands you could try which illustrate how pointers and the * and &
operators are used. It also shows that once a pointer has been set to point at a place in memory,

28

references to it actually share the same memory as the object it points to:

X=50L; /* set the nenory allocated for X to the value 50 */

Xpt r =&X; /[* set Xptr to point to X */

Xptr; / see that the value pointed at by Xptr is 50 */

X=100L; /* set X to the value 100 */

Xptr; / see that the value pointed at by Xptr changed to 100 */
* Xpt r =200L; /* set the value pointed at by Xptr to 200 */

X; /* see that the value in X changed to 200 */

Passing Pointers as Arguments

Pointers can be passed to functions and functions can change the values of the variables that are
pointed at. Thisistermed call-by-reference; areference, or pointer, to avariable is given to the
function that is being called. Thisisin contrast to call-by-value, the standard way that functions
are called, in which the value of avariable is given the to function being called.

The following example defines an aver age_sensor function which takes a port number and a
pointer to an integer variable. The function will average the sensor and store the result in the
variable pointed at by resul t .

Function arguments are declared to be pointers by prepending a star to the argument name, just
asisdone for other variable declarations.

voi d average_sensor(int port, int *result) ({
int sunr O;
int i;
for (i=0; i< 10; i++) sum += anal og(port);
*result= sun 10
}
Notice that the function itself is declared as avoi d. It does not need to return anything, because

it instead stores its answer in the pointer variable that is passed to it.

The pointer variableis used in the last line of the function. In this statement, the answer sum 10
is stored at the location pointed at by r esul t . Notice that the asterisk is used to assign avalue to
the location pointed by resul t .

Returning Pointers from Functions

Pointers can also be returned from functions. Functions are defined to return pointers by
preceeding the name of the function with a star, just like any other type of pointer declaration.

int right,left;
int *dirptr(int dir)
{

29

i f(dir==0) {
return(&ight);

}
i f(dir==1) {
return(& eft);

}
return(NULL);

}
The function di r pt r returns a pointer to the global ri ght when its argument di r is0, a pointer
tol eft whenitsargumentis 1, and NULL if itsargument is other than O or 1.

Arrays

| C supports arrays of characters, integers, long integers, floating-point numbers, structures,
pointers, and array pointers (multi-dimensional arrays). While unlike regular C arraysin a
number of respects, they can be used in asimilar manner. The main reasons that arrays are useful
are that they alow you to allocate space for many instances of a given type, send an arbitrary
number of valuesto functions, and iterate over a set of values.

Arraysin IC are different and incompatible with arraysin other versions of C. This
incompatibility is caused by the fact that references to IC arrays are checked to insure that the
reference is truly within the bounds of that array. In order to accomplish this checking in the
general case, it is necessary that the size of the array be stored with the contents of the array. It is
important to remember that an array of a given type and a pointer to the same type are
incompatible typesin IC, whereas they are largely interchangeablein regular C.

Declaring and I nitializing Arrays

Arrays are declared using square brackets. The following statement declares an array of ten
integers:
int foo[10];

In this array, elements are numbered from 0 to 9. Elements are accessed by enclosing the index
number within square brackets: f oo[4] denotes the fifth element of the array f oo (since counting
begins at zero).

Arrays areinitialized by default to contain all zero values. Arrays may aso beinitialized at
declaration by specifying the array elements, separated by commas, within curly braces. If no
size value is specified within the square brackets when the array is declared but initialization
information is given, the size of the array is determined by the number of elements given in the
declaration. For example,

30

int foo[]= {0, 4, 5, -8, 17, 301};

creates an array of six integers, with f oo[0] equalling O, f oo[1] equalling 4, etc.

If asizeis specified and initialization datais given, the length of the initialization data may not
exceed the specified length of the array or an error results. If, on the other hand, you specify the
size and provide fewer initialization elements than the total length of the array, the remaining
elements areinitiaized to zero.

Character arrays are typically text strings. Thereisa special syntax for initializing arrays of
characters. The character values of the array are enclosed in quotation marks:

char string[]= "Hello there"

Thisform creates a character array called st ri ng with the ASCII values of the specified
characters. In addition, the character array is terminated by a zero. Because of this zero-
termination, the character array can be treated as a string for purposes of printing (for example).
Character arrays can be initialized using the curly braces syntax, but they will not be
automatically null-terminated in that case. In general, printing of character arrays that are not
null-terminated will cause problems.

Passing Arrays as Arguments

When an array is passed to afunction as an argument, the array's pointer is actually passed,
rather than the elements of the array. If the function modifies the array values, the array will be
modified, since thereis only one copy of the array in memory.

In normal C, there are two ways of declaring an array argument: as an array or as a pointer to the
type of the array's elements. In IC array pointers are incompatible with pointers to the elements
of an array so such arguments can only be declared as arrays.

As an example, the following function takes an index and an array, and returns the array element
specified by the index:

int retrieve_element(int index, int array[]) { return array[index]; }

Notice the use of the square brackets to declare the argument ar r ay as a pointer to an array of
integers.

When passing an array variable to afunction, you are actually passing the value of the array
pointer itself and not one of its elements, so no sgquare brackets are used.

void foo() { int array[10]; retrieve_element (3, array); }

31

Multi-dimensional Arrays

A two-dimensional array isjust like asingle dimensional array whose elements are one-
dimensional arrays. Declaration of atwo-dimensional array is as follows:

int k[2][3];

The number in the first set of brackets isthe number of 1-D arrays of i nt . The number in the
second set of bracketsisthe length of each of the 1-D arrays of i nt . In thisexample, k isan
array containing two 1-D arrays; k[0] isal1l-D array of i nt of length 3; k[0][1] iSani nt.
Arrays of with any number of dimensions can be generalized from this example by adding more
brackets in the declaration.

Determining the size of Arraysat Runtime

An advantage of the way |C deals with arraysis that you can determine the size of arrays at
runtime. This allows you to do size checking on an array if you are uncertian of its dimensions
and possibly prevent your program from crashing.

Snce_array_si ze isnot a standard C feature, code written using this primitive will only be
able to be compiled with IC .

The _array_si ze primitive returns the size of the array given to it regardless of the dimension
or type of the array. Here is an example of declarations and interaction with the _array _size
primitive:

int i[4]={10, 20, 30};

int j[3][2]={{1,2},{2, 4},{15}};

int k[2][2][2];

_array_size(i); /* returns 4 */
_array_size(j); /* returns 3 */
_array_size(j[0]); /* returns 2 */
_array_size(k); /* returns 2 */
_array_size(k[0]); /* returns 2 */
Structures

Structures are used to store non-homogenous but related sets of data. Elements of a structure are
referenced by name instead of number and may be of any supported type. Structures are useful
for organizing related datainto a coherent format, reducing the number of arguments passed to
functions, increasing the effective number of values which can be returned by functions, and
creating complex data representations such as directed graphs and linked lists.

The following example shows how to define a structure, declare avariable of structure type, and

32

access its e ements.

struct foo { int i; int j; };

struct foo f1,;

void set_fl1(int i,int j) { fl.i=i; fl.j=; }
void get_fl1(int *i,int *j) { *i=f1l.i; *j=f1.j; }

Thefirst part isthe structure definition. It consists of the keyword st r uct , followed by the name
of the structure (which can be any valid identifier), followed by alist of named elementsin curly
braces. This definition specifies the structure of the typest ruct f oo.

Once thereis adefinition of thisform, you can use thetypestruct foo just like any other type.
Thelinestruct foo f1; isaglobal variable declaration which declares the variablef 1 to be of
typestruct foo.

The dot operator is used to access the elements of a variable of structure type. Inthiscase, f 1. i
andf1.j refer tothetwo elementsof f 1. You can treat the quantitiesf 1.i andf1.j just asyou
would treat any variables of typei nt (the type of the elements was defined in the structure
declaration at the top to bei nt).

Pointers to structure types can also be used, just like pointers to any other type. However, with
structures, there is a special short-cut for referring to the elements of the structure pointed to.
struct foo *fptr;

void main() { fptr=&f1; fptr->i =10; fptr->j=20; }

In thisexample, f pt r isdeclared to be a pointer to typestruct foo. Inmain, itisset to point to
the global f 1 defined above. Then the elements of the structure pointed to by f pt r (in this case
these are the same as the elements of f 1), are set. The arrow operator is used instead of the dot
operator because fptr is a pointer to avariable of type st ruct foo. Notethat (*fptr).i would
have worked just aswell asf ptr->i , but it would have been clumsier.

Note that only pointers to structures, not the structures themselves, can be passed to or returned
from functions.

Complex I nitialization examples

Complex types -- arrays and structures -- may be initialized upon declaration with a sequence of
constant values contained within curly braces and separated by commas. Arrays of character may
also beinitialized with a quoted string of characters.

For initialized declarations of single dimensional arrays, the length can be left blank and a
suitable length based on the initialization data will be assigned to it. Multi-dimensional arrays

33

must have the size of all dimensions specified when the array is declared. If alength is specified,
the initialization data may not overflow that length in any dimension or an error will result.
However, the initialization data may be shorter than the specified size and the remaining entries
will beinitialized to O.

Following is an example of legal global and local variable initializations:

/* declare nmany gl obal s of various types */

int i=50; int *ptr=NULL;

float farr[3]={ 1.2, 3.6, 7.4 };

int tarr[2][4]1={ { 1, 2, 3, 4}, { 2, 4, 6, 8} };

char c[]="H there how are you?";

char carr[5][10]={"Hi ","there", "how', "are", "you"};

struct bar { int i; int *p; long j;} b={5, NULL, 10L};
struct bar barr[2] ={ { 1, NULL, 2L}, { 3} };

/* declare locals of various types */

int foo() {
int x; /* create local variable x with initial value 0 */
int y=tarr[0][2]; /* create local variable y with initial value 3 */
int *iptr=&; /* create a | ocal pointer to integer
whi ch points to the global i */
int larr[2]={10, 20}; /* create a local array larr

with elenents 10 and 20 */
struct bar | b={5, NULL, 10L}; /* create a |local variable of type
struct bar with i=5 and j=10 */
char lc[]=carr[2]; /* create a local string Ic with
initial value "how' */

}
Statements and Expressions

Operators act upon objects of a certain type or types and specify what isto be done to them.
Expressions combine variables and constants to create new values. Statements are expressions,
assignments, function calls, or control flow statements which make up C programes.

Operators

Each of the data types has its own set of operators that determine which operations may be
performed on them.

Integer Operations

The following operations are supported on integers:

34

Arithmetic. addition +, subtraction - , multiplication *, division/ .

Comparison. greater-than >, less-than <, equality ==, greater-than-equal >=, less-than-
equal <=.

Bitwise Arithmetic. bitwise-OR | , bitwise-AND &, bitwise-exclusive-OR », bitwise-
NOT -~.

Boolean Arithmetic. logical-OR | | , logical-AND &&, logical-NOT ! . WhenaC
statement uses a boolean value (for example, i), it takes the integer zero as meaning
false, and any integer other than zero as meaning true. The boolean operators return zero
for false and one for true. Boolean operators && and | | will stop executing as soon as the
truth of the final expression is determined. For example, in the expressiona && b, if ais
false, then b does not need to be evaluated because the result must be false. The &&
operator therefore will not evaluate b.

Long Integers

A subset of the operations implemented for integers are implemented for long integers:
arithmetic addition +, subtraction - , and multiplication *, and the integer comparison operations.
Bitwise and boolean operations and division are not supported.

Floating Point Numbers

| C uses a package of public-domain floating point routines distributed by Motorola. This
package includes arithmetic, trigonometric, and logarithmic functions. Since floating point
operations are implemented in software, they are much slower than the integer operations; we
recommend against using floating point if you're concerned about performance.

The following operations are supported on floating point numbers:

Arithmetic. addition +, subtraction - , multiplication *, division/ .

Comparison. greater-than >, less-than <, equality ==, greater-than-equal >=, less-than-
equal <=.

Built-in Math Functions. A set of trigonometric, logarithmic, and exponential functions
is supported. See section Floating Point Functions, for details.

Characters

Characters are only allowed in character arrays. When a cell of the array isreferenced, it is

35

automatically coerced into ainteger representation for manipulation by the integer operations.
When avalue is stored into a character array, it is coerced from a standard 16-bit integer into an
8-hit character (by truncating the upper eight bits).

Assignment Operators and Expressions

The basic assignment operator is=. The following statement adds 2 to the value of a.
a=a+ 2

The abbreviated form

a += 2;

could also be used to perform the same operation.

All of the following binary operators can be used in this fashion:

+ - * / % << > & 7 |
| ncrement and Decrement Operators

The increment operator "++" increments the named variable. For example, the statement "a++" is

equivalent to "a= a+1" or "a+= 1".

A statement that uses an increment operator has a value. For example, the statement
a= 3; printf("a=% a+1=%\n", a, ++a);
will display the text "a=3 a+1=4."

If the increment operator comes after the named variable, then the value of the statement is
calculated after the increment occurs. So the statement

a= 3; printf("a=% a+1=%\n", a, at+);

would display "a=3 a+1=3" but would finish with a set to 4.

The decrement operator "- - " is used in the same fashion as the increment operator.
Data Access Operators
&

A single ampersand preceeding a variable, an array reference, or a structure element
reference returns a pointer to the location in memory where that information is being stored.
This should not be used on arbitrary expressions as they do not have a stable placein
memory where they are being stored.

36

A single star preceeding an expression which evaluates to a pointer returns the value which is
stored at that address. This process of accessing the value stored within a pointer is known as
dereferencing.

[expr]

An expression in square braces following an expression which evaluates to an array (an array
variable, the result of a function which returns an array pointer, etc.) checks that the value of
the expression falls within the bounds of the array and references that element.

A dot between a structure variable and the name of one of its fields returns the value stored in
that field.

An arrow between a pointer to a structure and the name of one of itsfieldsin that structure
acts the same as a dot does, except it acts on the structure pointed at by its left hand side.
Where f isastructure of atype with e as an element name, the two expressionsf . i and
(&f)->i areequivaent.

Precedence and Order of Evaluation

The following table summarizes the rules for precedence and associativity for the C operators.
Operators listed earlier in the table have higher precedence; operators on the same line of the
table have equal precedence.

Operator Associativity
0n left toright

I ~++ -- - (type) right to left
* 1% left toright

+ - left toright

<< >> left toright

37

<<=>>= left toright

=== left toright

& left to right

A left toright

| left toright

&& left toright

I right to left

= +=-=¢tcC. rlght to left

, left toright

Control Flow

| C supports most of the standard C control structures. One notable exception isthe swi t ch
statement, which is not supported.

Statements and Blocks

A single C statement is ended by a semicolon. A series of statements may be grouped together
into a block using curly braces. Inside ablock, local variables may be defined.

| f-Else

Theif el se statement isused to make decisions. The syntax is:

i f (expression) statenent-1 el se statenent-2

expression is evaluated; if it is not equal to zero (e.g., logic true), then statement-1 is executed.

Theel se clauseisoptional. If thei f part of the statement did not execute, and the el se is
present, then statement-2 executes.

38

While

The syntax of awhi | e loop isthe following:

whi | e (expression) st at enent

whi | e begins by evaluating expression. If it isfalse, then statement is skipped. If it istrue, then
statement is evaluated. Then the expression is evaluated again, and the same check is performed.
The loop exits when expression becomes zero.

One can easily create an infinite loop in C using the whi | e statement:
while (1) st at enent

For

The syntax of af or loop isthe following:

for (expr-1;expr-2;expr-3) st at enent

Thisis equivaent to the following construct using whi | e:
expr-1; while (expr-2) { st at enent expr-3; }

Typicaly, expr-1 isan assignment, expr-2 is arelational expression, and expr-3 is an increment
or decrement of some manner. For example, the following code counts from O to 99, printing
each number along the way:

int i; for (i=0; i < 100; i++) printf("%d\n", i);
Break

Use of the br eak provides an early exit from awhi | e or af or loop.

L CD Screen Printing

IC has aversion of the C function pri nt f for formatted printing to the LCD screen.

The syntax of pri nt f isthe following:
printf(format-string, [arg-1] , ... , [arg-N)
Thisis best illustrated by some examples.

Printing Examples

Example 1: Printing a message. The following statement prints a text string to the screen.

39

printf("Hello, world!\n");
In this example, the format string is simply printed to the screen.
The character \ n at the end of the string signifies end-of-line. When an end-of-line character is

printed, the LCD screen will be cleared when a subsequent character is printed. Thus, most
printf statements are terminated by a\ n.

Example 2: Printing a number. The following statement prints the value of the integer variable
x with abrief message.
printf("Value is %\n", x);

The special form % is used to format the printing of an integer in decimal format.

Example 3: Printing a number in binary. The following statement prints the value of the
integer variable x as a binary number.
printf("Value is %\n", x);

The special form % is used to format the printing of an integer in binary format. Only the low
byte of the number is printed.

Example 4: Printing a floating point number. The following statement prints the value of the
floating point variable n as afloating point number.

printf("Value is %\n", n);

The special form % is used to format the printing of floating point number.

Example5: Printing two numbersin hexadecimal format.
printf("A=% B=%\n", a, b);
The form % formats an integer to print in hexadecimal.
Formatting Command Summary
%l
Type: i nt Description: decimal number
%
Type: i nt Description: hexadecimal number
%

Type: i nt Description: low byte as binary number

40

%

Type: i nt Description: low byte as ASCII character

%
Type: f1 oat Description: floating point number
%
Type: char array Description: char array (string)
Format Command Data Type Description
vl int decimal number
% int hexadecimal number
% int low byte as binary number
% int low byte as ASCI| character
% float floating point number
%6 char array char array (string)
Special Notes
» Thefinal character position of the LCD screen is used as a system "heartbeat.” This
character continuously blinks between alarge and small heart when the board is
operating properly. If the character stops blinking, the board has failed.
» Charactersthat would be printed beyond the final character position are truncated.
* When using atwo-line display, the pri nt f () command treats the display asasingle
longer line.
* Printing of long integersis not presently supported.
Pr epr ocessor

The preprocessor processes afile before it is sent to the compiler. The IC preprocessor allows
definition of macros, and conditional compilation of sections of code. Using preprocessor macros

41

for constants and function macros can make | C code more efficient as well as easier to read.
Using #i f to conditionally compile code can be very useful, for instance, for debugging
purposes.

Preprocessor Macr os

Preprocessor macros are defined by using the #def i ne preprocessor directive at the start of a
line. If amacro is defined anywherein any of thefilesloaded into IC, it can be used anywherein
any file. The following example shows how to define preprocessor macros.

#define RI GHT_MOTOR O

#define LEFT_MOTOR 1

#define GO _RI GHT(power) (notor (R GHT_MOTOR, (power)))

#define GO _LEFT(power) (notor (LEFT_MOTOR, (power)))

#define GQ(left,right) {GO LEFT(left); GO _RI GHT(right);}

void main() { G 0,0); }

Preprocessor macro definitions start with the #def i ne directive at the start of aline, and continue
to the end of the line. After #def i ne isthe name of the macro, such asRI GHT_MOTOR. If thereisa
parenthesis directly after the name of the macro, such asthe GO_RI GHT macro has above, then the
macro has arguments. The GO_RI GHT and GO_LEFT macros each take one argument. The Go
macro takes two arguments. After the name and the optional argument list is the body of the
macro.

Each time amacro isinvoked, it is replaced with its body. If the macro has arguments, then each
place the argument appears in the body is replaced with the actual argument provided.

Invocations of macros without arguments look like global variable references. Invocations of
macros with arguments look like calls to functions. To an extent, thisis how they act. However,
macro replacement happens before compilation, whereas global references and function calls
happen at run time. Also, function calls evaluate their arguments before they are called, whereas
macros simply perform text replacement. For example, if the actual argument given to a macro
contains afunction call, and the macro instantiates its argument more than once in its body, then
the function would be called multiple times, whereas it would only be called once if it were
being passed as a function argument instead.

Appropriate use of macros can make |C programs and easier to read. It allows constants to be
given symbolic names without requiring storage and access time as a global would. It also allows
macros with arguments to be used in cases when afunction call is desirable for abstraction,
without the performance penalty of calling a function.

Macros defined in files can be used at the command line. Macros can aso be defined at the

42

commandline to be used in interactively, but these will not affect loads or compilation. To obtain
alist of the currently defined macros, typel i st defi nes at the IC prompt.

Conditional compilation

It is sometimes desirable to conditionally compile code. The primary example of thisisthat you
may want to perform debugging output sometimes, and disable it at other times. The IC
preprocessor provides a convenient way of doing this by using the #i f def directive.

void go_left(int power)
{
GO _LEFT(power);

#i f def DEBUG
printf("Going Left\n");
beep();

#endi f

}

In this example, when the macro DEBUG i s defined, the debugging message " Going Left" will be
printed and the board will beep each time go_I ef t iscalled. If the macro is not defined, the
message and beep will not happen. Each #i f def must be follwed by an #endi f at the end of the
code which is being conditionally compiled. The macro to be checked can be anything, and

#i f def blocks may be nested.

Unlike regular C preprocessors, macros cannot be conditionally defined. If amacro definition
occursinside an #i f def block, it will be defined regardless of whether the #i f def evaluatesto
true or false. The compiler will generate a warning if macro definitions occur within an #i f def
block.

The#i f, #el se, and #el i f directives are also available, but are outside the scope of this
document. Refer to a C reference manual for how to use them.

Comparison with regular C preprocessors

The way in which IC deals with loading multiple files is fundamentally different from the way in
which it isdonein standard C. In particular, when using standard C, files are compliled
completely independently of each other, then linked together. In IC, on the other hand, al files
are compiled together. Thisiswhy standard C needs function prototypes and ext er n global
definitionsin order for multiple files to share functions and globals, while IC does not.

In a standard C preprocessor, preprocessor macros defined in one C file cannot be used in
another C file unless defined again. Also, the scope of macrosis only from the point of definition

43

to the end of the file. The solution then isto have the prototypes, ext er n declarations, and
macros in header files which are then included at the top of each C file using the #i ncl ude
directive. This style interacts well with the fact that each file is compiled independent of all the
others.

However, since declarationsin IC do not file scope, it would be inconsistent to have a
preprocessor with file scope. Therefore, for consistency it was desirable to give IC macros the
same behavior as globals and functions. Therefore, preprocessor macros have global scope. If a
macro is defined anywhere in the files loaded into IC, it is defined everywhere. Therefore, the
#i ncl ude and #undef directives did not seem to have any appropriate purpose, and were
accordingly left out.

The fact that #def i ne directives contained within #i f blocks are defined regardless of whether
the #i f evaluatesto betrue or falseis aside effect of making the preprocessor macros have
global scope.

Other than these modifications, the IC preprocessor should be compatible with regular C
Preprocessors.

ThelCLibrary File

Library files provide standard C functions for interfacing with hardware on the robot controller
board. These functions are written either in C or as assembly language drivers. Library files
provide functions to do things like control motors, make tones, and input sensors values.

|C automatically loads the library file every timeit isinvoked. Depending on which 6811 board
isbeing used, adifferent library file will be required. IC may be configured to load different
library files asits default; the Windows and Mac versions of |C will automatically load the
correct library for the board you're using at the moment.

This documentation covers the libraries for the Handy Board and 6.270 board (Rev. 2.21) only; if
you have another board, see your owner's manual for documentation.

To understand better how the library functions work, study of the library file source codeis
recommended. The main library file for the Handy Boardisnamed 1 i b_hb. | i s.

Output Control

DC Motors
The Handy Board has four motor ports, numbered from O to 3.

Motor may be set in a"forward" direction (corresponding to the green motor LED being lit) and
a"backward" direction (corresponding to the motor red LED being lit).

Thefunctionsfd(int nm andbk(int m turn motor mon forward or backward, respectively, at
full power. The function of f (i nt m) turns motor moff.

The power level of motors may aso be controlled. Thisis done in software by turning a motor
on and off rapidly (atechnique called pulse-width modulation. Themotor (int m int p)
function allows control of a motor's power level. Powers range from 100 (full onin the forward
direction) to - 100 (full on the the backward direction). The system software actually only
controls motors to seven degrees of power, but argument bounds of - 100 and +100 are used.

void fd(int m

Turns motor mon in the forward direction. Example: f d(3) ;
void bk(int m

Turns motor mon in the backward direction. Example: bk(1) ;
void of f(int m

Turns off motor m Example: of f (1) ;
void alloff()
voi d ao()

Turns off all motors. ao isashort form for al | of f.
void nmotor(int m int p)

Turns on motor mat power level p. Power levels range from 100 for full on forward to - 100
for full on backward.

Servo Motor

Servos are motors with internal position feedback which you can accurately command to a given
orientation. Servos will actively seek to move to and remain at the orientation they are

45

commanded to go to. Servos are useful for aiming sensors or moving actuators through a limited
arc. They are generally able to sweep through about 180 degrees and no more.

The servo motors have athree pin female connector. They plug onto the triplets of pinsaong the
left side of the expansion board (see photo). Normally the servo is turned on in the main routine
and left on for the duration of the program. It can be turned off to save battery power, however
the servo can be back-driven quite easily when it is unpowered. The servo motor can turn
approximately 180 degrees.

The Expansion Board provides outputs for six servo motors, numbered from O to 5. The
following function is used to enable and disable the servo control signals:

i nit_expbd_servos(1); /*turnson the servo power */
i nit_expbd_servos(0); /* turnsoff the servo power */
The servos are turned off every time the Handy board is reset.

Six global variables are provided for controlling the position of the six servo motors. These
globalsarenamed: servoO, servol, servo2, servo3, servo4, and servob5,
for servo outputs O through 5 respectively. When the Expansion Board servo drivers are loaded,
these variables are defined as globals in the Interactive C environment. Modify these globals
with simple assignment statements; e.g., ser vo3= 1500;

The values determine the length of the timing pulse provided to each servo, which in turn
corresponds to arotational position of the servo motor. Valid values range from 0O to about 4000.
The servo isnot a LEGO part, and so it may be necessary to hot glue or epoxy a piece of LEGO
to the body of the servo, and one piece to the actuator arm of the servo, in order to connect it to
the rest of your robot.

Sensor | nput

Digital I nput
int digital (int p)

Returns the value of the sensor in sensor port p, as atrue/false value (1 for true and O for
false). Sensors are expected to be active low, meaning that they are valued at zero voltsin the
active, or true, state. Thus the library function returns the inverse of the actual reading from
the digital hardware: if the reading is zero volts or logic zero, the di gi t al () function will
return true.

46

The Handy Board has two buttons. On the Handy Board, the buttons are labelled st art and
St op.

int stop_button()

Returns value of button labelled st op (or Choose): 1if pressed and O if released. Example:
/* wait until stop button pressed */ while (!stop_button()) {}

int start_button()

Returns value of button labelled st art (or Escape). Example:

/* wait for button to be pressed; then wait for it to be released so
that button press is debounced */ while (!start_button()) {} whil e
(start_button()) {}

The Handy Board has two additional convenience functions.
voi d stop_press()

Waits for the st op button to be pressed, then released. Then issues a short beep and returns.
The code for st op_press() isasfollows:
while (!stop_button()); while (stop_button()); beep();

void start_press()

Likestop_press(), but for the st art button.

Analog Inputs
int anal og(int p)

Returns value of sensor port numbered p. Result isinteger between 0 and 255. If the

anal og() function isapplied to a port that isimplemented digitally in hardware, then the
value 255 isreturned if the hardware digital readingis 1 (asif adigital switch isopen, and
the pull up resistors are causing a high reading), and the value O is returned if the hardware
digital reading is O (asif adigital switchis closed and pulling the reading near ground). Ports
are numbered as marked. Note that ports 16-22 are floating, so without a sensor inserted, the
value cannot be predicted.

int knob()

Returns a value from O to 255 based on the position of a potentiometer. On the 6.270 board,
the potentiometer islabelled f r ob knob.

a7

Infrared Subsystem

The Handy Board provides an on-board infrared receiver (the Sharp IS 1 U60), for infrared
input, and a 40 kHz modulation and power drive circuit, for infrared output. The output circuit
requires an external infrared LED.

As of thiswriting, only the infrared receive function is officially supported. On the Handy Board
web site, contributed software to extend the ifrared functionality is available.

To use theinfrared reception function, the file sony-ir.icb must be loaded into Interactive C. This
file may be added to the Handy Board default library file, lib_hb.lis. Please make sure that the
filer22_ir.lisisnot present in thelib_hb.lisfile.

The sony-ir.icb file adds the capability of receiving infrared codes transmitted by a Sony remote,
or auniversal remote programmed to transmit Sony infrared codes.

i nt sonyinit(1) Enablestheinfrared driver.
i nt sonyinit(0) Disablestheinfrared driver.

int irdata(int dumy) Returnsthe databyte last received by the driver, or zero if no data
has been received since the last call. A value must be provided for the dummy argument, but its
valueisignored.

The infrared sensor is the dark green component in the Handy Board's lower right hand corner.

In atypical 6.270 application, one robot will be broadcasting infrared at 100 Hz. and will set its
detection system for 125 Hz. The other robot will do the opposite. Each robot must physically
shield its IR sensors from its own light; then each robot can detect the emissions of the other.

The infrared reception software employs a phase-locked loop to detect infrared signals
modulated at a particular frequency. This program generates an internal squarewave at the
desired reception frequency and attempts to lock this squarewave into synchronization with a
waveform received by an infrared sensor. If the error between the internal wave and the external
wave is below some threshold, the external wave is considered "detected." The software returns
as aresult the number of consecutive detections for each of the infrared sensor inputs.

While enabled, the infrared reception software requires a great deal of processor time. Therefore,
it is desirable to disable the IR reception whenever it is not being actively used.

Up to four infrared sensors may be used. These are plugged into positions 4 through 7 of the
digital input port. These ports and the remainder of the digital input port may be used without

48

conflict for standard digital input while the infrared detection software is operating.

The following library functions control the infrared detection system:
void ir_receive_on()

Enables the infrared reception software. The default is disabled. When the softwareis
enabled, between 20% and 30% of the 6811 processor time will be spent performing the
detection function; therefore it should only be enabled if it is being used. You must wait at
least 100 milliseconds after starting the reception before the data is valid.

void ir_receive_off()
Disablesthe infrared reception software.
voi d set_ir_receive_frequency(int f)

Sets the operating frequency for the infrared reception software. f should be 100 for 100 Hz.
or 125 for 125 Hz. Default is 100.

int ir_counts(int p)

Returns number of consecutive squarewaves at operating frequency detected from port p of
the digital input port. Result is number from 0 to 255. p must be 4, 5, 6, or 7 Random noise
can cause spurious readings of 1 or 2 detections. The return value of i r _count s() should be
greater than three before it is considered the result of avalid detection. You must wait at |east
100 milliseconds after starting the reception beforethe i r_count s() dataisvalid.

Shaft Encoders

Shaft encoders can be used to count the number of times awheel spins, or in general the number
of digital pulses seen by an input. A type of shaft encoder can be made using the supplied
sensors: e.g., optical encoders which use optical switches whose beam is periodically broken by
adlotted whesel.

Shaft encoders are implemented using the input timer capture feature on the 6811. Therefore
processing time is only used when a pulse is actually being recorded, and even very fast pulses
can be counted. Digital ports 7 and 8 on the Handy Board are two input capture channels which
are available for use, so two channels of shaft encoding are supported.

The encoding software keeps a running count of the number of pulses each enabled encoder has
seen. The number of countsis set to O when achanel isfirst enabled and when a user resets that
channel. Because the counters are only 16-bits wide, they will overflow and the value will appear

49

negative after 32,767 counts have been accumulated without a reset.

As shaft encoders are an optional feature, the library routines which read them are not loaded on
start up.

In order to load the following routines for use in your programs, load the fileencoders. I i s.
Thisfileisin the standard IC library directory.

The actions of the shaft encoders are commanded and the results are read using the following
routines. The argument encoder to each of the routines specifies which shaft encoder the
function should affect. This value should be O for digital port 7 on the Handy Board (0 on the
6.270) or 1 for digital port 8 on the Handy Board (1 on the 6.270). Arguments out of the range O
to 1 have no useful effect.

voi d enabl e_encoder (i nt encoder)

Enables the given encoder to start counting pulses and resets its counter to zero. By default
encoders start in the disabled state and must be enabled before they start counting.

voi d di sabl e_encoder (i nt encoder)

Disables the given encoder and prevents it from counting. Each shaft encoder uses processing
time every time it receives a pulse while enabled, so they should be disabled when you no
longer need the encoder's data.

voi d reset_encoder (i nt encoder)

Resets the counter of the given encoder to zero. For an enabled encoder, it is more efficient
to reset its value than to use enabl e_encoder () to clear it.

int read_encoder (int encoder)
Returns the number of pulses counted by the given encoder since it was enabled or since the

last reset, whichever was more recent.

Time Commands

System code keeps track of time passage in milliseconds. Library functions are provided to allow
dealing with time in milliseconds (using long integers), or seconds (using floating point
numbers).

voi d reset_systemtinme()

Resets the count of system time to zero milliseconds.
50

| ong nmseconds()

Returns the count of system time in milliseconds. Time count is reset by hardware reset (i.e.,
pressing reset switch on board) or the functionreset _system ti me() . nseconds() IS
implemented as a C primitive (not as alibrary function).

fl oat seconds()

Returns the count of system time in seconds, as a floating point number. Resolution is one
millisecond.

voi d sl eep(float sec)

Waits for an amount of time equal to or slightly greater than sec seconds. sec isafloating
point number. Example:
/* wait for 1.5 seconds */ sleep(1.5);

voi d nsl eep(l ong nsec)

Waits for an amount of time equal to or greater than nsec milliseconds. msec isalong
integer. Example:
[* wait for 1.5 seconds */ nsl eep(1500L);

Tone Functions

Two simple commands are provided for producing tones on the standard beeper.
voi d beep()

Produces atone of 500 Hertz for a period of 0.3 seconds. Returns when the tone is finished.
voi d tone(float frequency, float |ength)

Produces atone at pitch f r equency Hertz for | engt h seconds. Returns when the toneis
finished. Both f r equency and | engt h are floats. In addition to the simple tone commands,
the following functions can be used asynchronously to control the beeper driver.

voi d set _beeper_pitch(fl oat frequency)

Sets the beeper tone to be f r equency Hz. The subsequent function is then used to turn the
beeper on.

voi d beeper_on()

Turns on the beeper at last frequency selected by the former function. The beeper remains on

51

until the beeper _of f function is executed.

voi d beeper _of f()

Turns off the beeper.

Menuing and Diagnostics Functions

These functions are not loaded automatically, but they are available for you to useif you wish.
They currently work only on the 6.270 board, but could probably be ported to the Handy Board
without too much trouble. They provide a standardized user interface for prompting users for
input using the Choose and Sel ect buttons and the frob knob. Y ou may wish to use thislibrary
for debugging the state of your robot while away from the terminal or for changing thresholds or
gainson thefly.

menu.c

Load menu. ¢ to be able to use these functions.

int select_string(char choices[][],int n)

Interactively selects a string from an array of string (two-dimensional array of characters) of
length n and returns an integer when a button is pressed. If the button pressed was choose, it
returns the index into the array of the selected string, otherwise it returns -1. Example of use:
char a[3][14]={"Analog Port ","Digital Port ","QUit"}; o int

port,index=sel ect_string(a,3); if(index>-1 && i ndex<2)
port=sel ect _int_val ue(a[index], 0, 27);

int select_int_value(char s[],int min_val,int max_val)

float select_float_value(char s[],float min_val,float max_val)

Interactively selects and returns a number between ni n_val and max_val which is selected
by adjusting the frob knob until the appropriate value is displayed then pressing a button. If
escape was pressed, returns-1 (or -1.0) regardless of the value chosen. Otherwise returns the
chosen value. Remember that the frob knob only returns one of 255 values, so if therangeis
greater than that not all values will be possible choices.

int chosen_button()

Checks the user buttons and returns CHOOSE_B if choose is pressed, ESCAPE_B if escape
ispressed, and NEITHER_B if neither button is pressed. If both buttons are pressed, choose
has priority.

52

int wait_button(int node)

Waits for either user button to execute the action appropriate to node then returns which
button was pressed. The choices for node are: DOWN_B -- wait until either button is
pressed; UP_B -- wait until no buttons are pressed; CYCLE_B -- wait until abutton is
depressed and then all depressed buttons are released before returning.

diagnostic.c

Load menu. ¢ and di agnost i c. ¢ to be able to use these functions. Y ou can easily copy
di agnost i c. ¢ and modify the cont r ol _panel function to call your own routines.

voi d control _panel ()

Genera purpose control panel to let you view inputs, frob outputs, or set A to D thresholds.
Pressing escape from the main menu or selecting "Quit" exits the control panel.

int view average port(int port,int sanples)

Displays the analog reading of the given port until a button is pressed. If the button is
choose, it then samples the reading at the given port, averages sanpl es readings together,
then prints and returns the average result. If the button pushed was ecape, it returns -1.

voi d view_ i nputs()

Genera purpose input status viewer using the standard menuing routines to show digital
inputs, analog inputs, frob knob, dip switches, and motor force inputs. Pressing escape at
any time exits the viewer.

voi d frob_out puts()

Genera purpose output frobber. Uses the standard menuing routines to let you control the
motors, led outputs, ir output, and the servo. Pressing escape from the main menu or
selecting "Quit" exits the frobber.

Multi-Tasking

Overview

One of the most powerful features of 1C isits multi-tasking facility. Processes can be created and
destroyed dynamically during run-time.

53

Any C function can be spawned as a separate task. Multiple tasks running the same code, but
with their own local variables, can be created.

Processes communicate through global variables: one process can set a global to some value, and
another process can read the value of that global.

Each time a process runs, it executes for a certain number of ticks, defined in milliseconds. This
value is determined for each process at the time it is created. The default number of ticksisfive;
therefore, a default process will run for 5 milliseconds until its "turn” ends and the next process
isrun. All processes are kept track of in a process table; each time through the table, each
process runs once (for an amount of time equal to its number of ticks).

Each process has its own program stack. The stack is used to pass arguments for function calls,
store local variables, and store return addresses from function calls. The size of this stack is
defined at the time a process is created. The default size of a process stack is 256 bytes.

Processes that make extensive use of recursion or use large local arrayswill probably require a
stack size larger than the default. Each function call requires two stack bytes (for the return
address) plus the number of argument bytes; if the function that is called creates|ocal variables,
then they also use up stack space. In addition, C expressions create intermediate values that are
stored on the stack.

It is up to the programmer to determine if a particular process requires a stack size larger than the
default. A process may also be created with a stack size smaller than the default, in order to save
stack memory space, if it is known that the process will not require the full default amount.

When a process is created, it is assigned a unique process identification number or pid. This
number can be used to kill a process.

Creating New Processes

The function to create anew processiSst art _process. start _process takes one mandatory
argument--the function call to be started as a process. There are two optional arguments:. the
process's number of ticks and stack size. (If only one optional argument is given, it is assumed to
be the ticks number, and the default stack sizeis used.)

start_process hasthe following syntax:
int start_process(function-call(...),[TICKS], [STACK-SI ZE])

start_process returnsan integer, which is the process ID assigned to the new process.

54

The function call may be any valid call of the function used. The following code shows the
function mai n creating a process:

voi d check_sensor(int n) {
while (1)
printf("Sensor % is %\n", n, digital(n));
}

void main() { start_process(check_sensor(2)); }

Normally when a C functions ends, it exits with areturn value or the "void" value. If afunction
invoked as a process ends, it "dies," letting its return value (if there was one) disappear. (Thisis
okay, because processes communicate results by storing them in globals, not by returning them
asreturn values.) Hence in the above example, the check_sensor function is defined as an
infinite loop, so asto run forever (until the board isreset or aki I | _process is executed).

Creating a process with a non-default number of ticks or a non-default stack sizeissimply a
matter of using st art _pr ocess with optional arguments; e.g.

start _process(check_sensor(2), 1, 50);
will create acheck_sensor process that runs for 1 milliseconds per invocation and has a stack

size of 50 bytes (for the given definition of check_sensor, asmall stack space would be
sufficient).

Destroying Processes

Theki I | _process function is used to destroy processes. Processes are destroyed by passing
their process ID number to ki I | _pr ocess, according to the following syntax:

int kill_process(int pid);

kil _process returnsavalueindicating if the operation was successful. If the return valueiso,
then the process was destroyed. If the return valueis 1, then the process was not found.

The following code shows the mai n process creating acheck_sensor process, and then
destroying it one second | ater:
void main() {

int pid;

pi d= start_process(check_sensor(2));

sl eep(1.0);
kill _process(pid);

55

Process M anagement Commands

|C has two commands to help with process management. The commands only work when used at
the IC command line. They are not C functions that can be used in code.

kill_all
killsall currently running processes.
ps

prints out alist of the process status. The following information is presented: process ID,
status code, program counter, stack pointer, stack pointer origin, number of ticks, and name
of function that is currently executing.

Process Management Library Functions

The following functions are implemented in the standard C library.

voi d hog_processor()

Allocates an additional 256 milliseconds of execution to the currently running process. If this
function is called repeatedly, the system will wedge and only execute the process that is
calling hog_processor () . Only asystem reset will unwedge from this state. Needless to say,
this function should be used with extreme care, and should not be placed in aloop, unless
wedging the machine is the desired outcome.

voi d defer()

Makes a process swap out immediately after the function is called. Useful if a process knows
that it will not need to do any work until the next time around the scheduler loop. def er () is
implemented as a C built-in function.

Floating Point Functions

In addition to basic floating point arithmetic (addition, subtraction, multiplication, and division)
and floating point comparisons, a number of exponential and transcendental functions are built in
tolIC:

float sin(float angle)

Returns sine of angl e. Angleis specified in radians; result isin radians.

56

float cos(float angle)

Returns cosine of angl e. Angle is specified in radians; result isin radians.
float tan(float angle)

Returns tangent of angl e. Angleis specified in radians; result isin radians.
float atan(float angle)

Returns arc tangent of angl e. Angleis specified in radians; result isin radians.
float sqrt(float nun)

Returns square root of num
float |10gl0(fl oat num

Returns logarithm of numto the base 10.
float |og(float num

Returns natural logarithm of num
fl oat explO(fl oat num

Returns 10 to the numpower.
float exp(float num

Returns e to the numpower.
(float) a » (float) b

Returnsa to the b power.

Memory Access Functions

|C has primitives for directly examining and modifying memory contents. These should be used
with care asit is easy to corrupt memory and crash the system using these functions.

int peek(int |oc)
Returns the byte located at address| oc.

int peekword(int |oc)

Returns the 16-bit value located at address| oc and | oc+1. | oc hasthe most significant byte,
57

as per the 6811 16-bit addressing standard.
voi d poke(int loc, int byte)
Stores the 8-bit value byt e at memory address| oc.
voi d pokeword(int |oc, int word)
Stores the 16-bit value wor d at memory addresses| oc and | oc+1.
void bit_set(int loc, int mask)
Sets bits that are set in mask at memory address| oc.
void bit_clear(int loc, int mask)

Clears bits that are set in mask at memory address| oc.

Error Handling

There are two types of errors that can happen when working with 1C: compile-time errors and
run-time errors.

Compile-time errors occur during the compilation of the sourcefile. They are indicative of
mistakes in the C source code. Typical compile-time errors result from incorrect syntax or mis-
matching of data types.

Run-time errors occur while a program is running on the board. They indicate problems with a
valid C form when it is running. A simple example would be a divide-by-zero error. Another
example might be running out of stack space, if arecursive procedure goes too deep in recursion.

These types of errors are handled differently, asis explained below.

Compile-TimeErrors

When compiler errors occur, an error message is printed to the screen. All compile-time errors
must be fixed before afile can be downloaded to the board.

Run-TimeErrors

When arun-time error occurs, an error message is displayed on the LCD screen indicating the
error number. If the board is hooked up to IC when the error occurs, a more verbose error
message is printed on the terminal.

58

Hereisalist of the run-time error codes:

1

10

11

no stack spacefor start _process()

no process slots remaining

array reference out of bounds

stack overflow error in running process

operation with invalid pointer

floating point underflow

floating point overflow

floating point divide-by-zero

number too small or large to convert to integer

tried to take square root of negative number

tangent of 90 degrees attempted

59

12

log or In of negative number or zero
15

floating point format error in printf
16

integer divide-by-zero

Binary Programs

With the use of a customized 6811 assembler program, IC allows the use of machine language
programs within the C environment. There are two ways that machine language programs may
be incorporated:

1. Programs may be called from C asif they were C functions.

2. Programs may install themselves into the interrupt structure of the 6811, running
repetitiously or when invoked due to a hardware or software interrupt.

When operating as a function, the interface between C and a binary program is limited: a binary
program must be given one integer as an argument, and will return an integer as its return value.
However, programsin a binary file can declare any number of global integer variablesin the C
environment. Also, the binary program can use its argument as a pointer to a C data structure.

TheBinary SourceFile

Specia keywords in the source assembly language file (or module) are used to establish the
following features of the binary program:

Entry point
The entry point for calls to each program defined in the binary file.
I nitialization entry point

Each file may have one routine that is called automatically upon areset condition. (See
section Local and Global Scopes, for a discussion of global variable initialization.) This
initialization routine is particularly useful for programs which will function as interrupt

60

routines.
C variable definitions

Any number of two-byte C integer variables may be declared within abinary file. When the
moduleisloaded into IC, these variables become defined as globalsin C.

To explain how these features work, let's look at a sample IC binary source program:

/* Sample icbhb file */
/* origin for nodul e and vari ables */

ORG MAI N_START
/* programto return twi ce the argunent passed to us */
subrouti ne_doubl e: ASLD RTS
/* declaration for the variable "foo" */
vari abl e_foo: FDB 55
/* programto set the C variable "foo" */
subroutine_set foo: STD vari abl e _foo RTS
/* programto retrieve the variable "foo" */
subroutine_get foo: LDD vari abl e_foo RTS
/* code that runs on reset conditions */
subroutine initialize nodule: LDD #69 STD
vari abl e_foo RTS

The first statement of the file ("ORG MAI N_START") declares the start of the binary programs.
This line must precede the code itself itself.

The entry point for a program to be called from C is declared with a special form beginning with
the text subr out i ne_. In this case, the name of the binary program is doubl e, so the label is
named subr out i ne_doubl e. Asthe comment indicates, thisis a program that will double the
value of the argument passed to it.

When the binary programis called from C, it is passed one integer argument. Thisargument is
placed in the 6811's D register (also known as the "Double Accumulator") before the binary code
iscalled.

The doubl e program doubles the number in the D register. The ASLD instruction ("Arithmetic
Shift Left Double [Accumulator]”) is equivalent to multiplying by 2; hence this doubles the
number in the D register.

TheRTs instruction is "Return from Subroutine.” All binary programs must exit using this
instruction. When a binary program exits, the value in the D register is the return valueto C.
Thus, the doubl e program doublesits C argument and returnsit to C.

61

Declaring Variablesin Binary Files

Thelabel vari abl e_f oo isan example of a special form to declare the name and location of a
variable accessable from C. The special label prefix "vari abl e_" isfollowed the name of the
variable, in this case, "f 0o."

Thislabel must be immediately followed by the statement FDB <nunber >. Thisis an assembler
directive that creates atwo-byte value (which istheinitial value of the variable).

Variables used by binary programs must be declared in the binary file. These variables then
become C globals when the binary file isloaded into C.

The next binary program in the fileis named "set _f 0o." It performs the action of setting the
value of the variable f oo, which is defined later in thefile. It does this by storing the D register
into the memory contents reserved for f oo, and then returning.

The next binary program is named "get _f 0o." It loads the D register from the memory reserved
for f oo and then returns.

Declaring an Initialization Program

Thelabel subroutine_initialize_nmodul e isaspecial form used to indicate the entry point for
code that should be run to initialize the binary programs. This code is run upon standard reset
conditions: program download, hardware reset, or running of the mai n() function.

In the example shown, the initialization code stores the value 69 into the location reserved for the
variable f oo. Thisthen overwrites the 55 which would otherwise be the default value for that
variable.

Initialization of globals variables defined in an binary module is done differently than globals
defined in C. In abinary module, the globals are initialized to the value declared by the FDB
statement only when the code is downloaded to the 6811 board (not upon reset or running of
main, like normal globals).

However, the initialization routine is run upon standard reset conditions, and can be used to
initialize globals, as this example hasillustrated.

Interrupt-Driven Binary Programs

Interrupt-driven binary programs use the initialization sequence of the binary module to install a
piece of code into the interrupt structure of the 6811.

62

The 6811 has a number of different interrupts, mostly dealing with its on-chip hardware such as
timers and counters. One of these interruptsis used by the 6.270 software to implement time-
keeping and other periodic functions (such as LCD screen management). This interrupt, dubbed
the "System Interrupt,” runs at 1000 Hertz.

Instead of using another 6811 interrupt to run user binary programs, additional programs (that
need to run at 1000 Hz. or less) may install themselves into the System Interrupt. User programs
would be then become part of the 1000 Hz interrupt sequence.

Thisis accomplished by having the user program "intercept” the original 6811 interrupt vector
that pointsto 6.270 interrupt code. This vector is made to point at the user program. When user
program finishes, it jumpsto the start of the 6.270 interrupt code.

Before User Program Installation

i

6811 interrupt vector
(dedicated RAM position)

6.270 system
software
interrupt driver

Return from Interrupt

instruction RTI

63

After User Program Installation

6811 interrupt vector
{dedicated RAM position) Vad

User assembly
language program

Jump mstruction JMP

e

6.270 system
software
mterrapt driver

!

RTI

Retum from Interrupt
mstruction

The top picture depicts the interrupt structure before user program installation. The 6811 vector
location points to system software code, which terminates in a"return from interrupt"
instruction.

The bottom picture illustrates the result after the user program isinstalled. The 6811 vector
points to the user program, which exits by jumping to the system software driver. This driver
exits as before, with the RTI instruction.

Multiple user programs could be installed in this fashion. Each one would install itself ahead of
the previous one. Some standard 6.270 library functions, such as the shaft encoder software, is
implemented in this fashion.

* icb file: "sysibeep.asn *ox exanpl e of code installing itself into *

Systemint 1000 Hz interrupt * * Fred Martin * Thu Cct 10 21:12:13 1991 *
#i ncl ude <6811regs. asne ORG MAI N_START

subroutine_initialize _nodul e: #i ncl ude <l dxi base. asn» * X now has base

64

pointer to interrupt vectors ($FFO0 or $BFO00) * get current vector; poke

such that when we finish, we go there LDD TOCAI NT, X ;
System nt on TOC4 STD interrupt_code_exit+l * install ourself
as new vector LDD #interrupt_code_start STD TOCAI NT, X
RTS * interrupt program begins here interrupt_code_start: * frob
the beeper every tinme called LDAA PORTA EORA #9©0001000
beeper bit STAA PORTA interrupt_code_exit: JWP
$0000 ; this value poked in by init routine

The above program installs itself into the System Interrupt. This program toggles the signal line
controlling the piezo beeper every timeit is run; since the System Interrupt runs at 1000 Hz., this
program will create a continous tone of 500 Hz.

Thefirst line after the comment header includes afile named " 6811regs. asm'. Thisfile
contains equates for all 6811 registers and interrupt vectors; most binary programs will need at
least afew of these. It is simplest to keep them @l in one file that can be easily included. (This
and other filesincluded by the as11 assembler are located in the assembler's default library
directory, whichis/mit/6.270/1i b/ as11/ onthe MIT Athena system.)

Thesubroutine_initialize_nodul e declaration begins the initialization portion of the
program. Thefile" | dxi base. asni' isthen included. Thisfile contains afew lines of 6811
assembler code that perform the function of determining the base pointer to the 6811 interrupt
vector area, and loading this pointer into the 6811 X register.

The following four lines of code install the interrupt program (beginning with the label
i nterrupt _code_st art) according to the method described above.

First, the existing interrupt pointer is fetched. Asindicated by the comment, the 6811's TOC4
timer is used to implement the System Interrupt. The vector is poked into the IMP instruction
that will conclude the interrupt code itself.

Next, the 6811 interrupt pointer is replaced with a pointer to the new code. These two steps
complete the initialization sequence.

The actual interrupt code is quite short. It toggles bit 3 of the 6811's PORTA register. The
PORTA register controls the eight pins of Port A that connect to external hardware; bit 3is
connected to the piezo beeper.

The interrupt code exits with ajump instruction. The argument for thisjump is poked in by the
initialization program.

The method allows any number of programs located in separate files to attach themselves to the
System Interrupt. Because these files can be loaded from the C environment, this system affords

65

maximal flexibility to the user, with small overhead in terms of code efficiency.

TheBinary Object File

The source file for abinary program must be named with the . asmsuffix. Once the . asmfileis
created, a special version of the 6811 assembler program is used to construct the binary object
code. This program creates a file containing the assembled machine code plus label definitions of
entry points and C variables.

S116802005390037FD802239FC802239CC0045FD8022393C S9030000FC
S116872B05390037FD872D39FC872D39CC0045FD872D39F4 S9030000FC 6811 assenbl er
version 2.1 10-Aug-91 pl ease send bugs to Randy Sargent

(rsargent @t hena. i t. edu) origi nal program by Mdtorola. subroutine_double
872b *0007 subroutine_get foo 8733 *0021 subroutine_initialize_nmodule 8737
*0026 subroutine _set foo 872f *0016 variable foo 872d *0012 0017 0022 0028
The program as11_i ¢ isused to assemble the source code and create a binary object file. It is
given the filename of the source file as an argument. The resulting object file is automatically
given the suffix . i cb (for IC Binary). The binary object file that is created from the

t esti cb. asmexamplefileis shown above. Currently, as11_i ¢ runsonly under UNIX; if you
need to create . i cb files from another platform, you can use our ICB Assembler server on the
World Wide Web (http://www.newtonlabs.com/ic/ich.html) .

Loading anicb File

Oncethe. i cb fileis created, it can be loaded into IC just like any other Cfile. If thereare C
functions that are to be used in conjunction with the binary programs, it is customary to put them
into afile with the same name asthe . i cb file, and thenuse a. | i s file to loads the two files
together.

Passing Array Pointersto a Binary Program

A pointer to an array is a 16-bit integer address. To coerce an array pointer to an integer, use the
following form:

array_ptr= (int) array;

wherearray_ptr isSaninteger and array isan array.

When compiling code that performs this type of pointer conversion, IC must be used in a special
mode. Normally, 1C does not allow certain types of pointer manipulation. To compile this type of
code, use the following invokation:

ic -w zard

66

Arrays are internally represented with atwo-byte length value followed by the array contents.

| C File Formats and M anagement

This section explains how | C deals with multiple source files.

C Programs

All files containing C code must be named with the ™. ¢" suffix.

L oading functions from more than one C file can be done by issuing commands at the IC prompt
to load each of thefiles. For example, to load the C files named f oo. ¢ and bar . c:

C load foo.c C load bar.c

Alternatively, the files could be loaded with a single command:

C load foo.c bar.c
List Files

If the program is separated into multiple files that are always |oaded together, a"list file" may be
created. Thisfiletells IC to load a set of named files. Continuing the previous example, afile
caled gnu. I i s can be created containing the following lines.:

foo.c bar.c

Then typing the command | oad gnu. Ii s from the C prompt would cause both f oo. ¢ and bar . c
to be loaded.

File and Function M anagement

Unloading Files

When files are loaded into | C, they stay loaded until they are explicitly unloaded. If one of the
program filesis being worked on, the other ones will remain in memory so that they don't have
to be explicitly re-loaded each time the one undergoing development is reloaded.

However, suppose thefile f oo. ¢ isloaded, which contains a definition for the function mai n.
Then thefilebar . ¢ isloaded, which happens to also contain a definition for mai n. There will be
an error message, because both files contain amai n. IC will unload bar . ¢, due to the error, and
re-download f oo. ¢ and any other filesthat are presently loaded.

The solution isto first unload the file containing the mai n that is not desired, and then load the
67

file that contains the new mui n:

C unload foo.c C load bar.c

Configuring IC under UNIX

|C has a multitude of command-line switches that allow control of a number of things.
Explanations for these switches can be gotten by issuing the command "i ¢ - hel p".

| C stores the search path for and name of the library filesinternally; theses may be changed by
executing the command "i ¢ - confi g". When this command is run, IC will prompt for a new
path and library file name, and will create a new executable copy of itself with these changes.

Theic -confi g command isaso used to set your license key and name when first running IC.

68

