
Evaluating a Breadth-First CS 1 for Scientists
Zachary Dodds, Ran Libeskind-Hadas, Christine Alvarado, Geoff Kuenning

Harvey Mudd College Computer Science Department
301 Platt Boulevard

Claremont, CA 91711
909-607-1813

{dodds, hadas, alvarado, geoff}@cs.hmc.edu

ABSTRACT
This paper presents a thorough evaluation of CS for Scientists, a
CS 1 course designed to provide future scientists with an
overview of the discipline. The course takes a breadth-first
approach that leverages its students' interest and experience in
science, mathematics, and engineering. In contrast to many other
styles of CS 1, this course does not presume that its students will
study more computer science, but it does seek to prepare them
should they choose to. We summarize the past year’s worth of
assessments of student learning, retention, and affect – with
particular attention paid to women’s voices. Where possible, we
contrast these student measures with those from a traditional,
imperative-first CS1 that this new course replaced. The data thus
far suggest that CS for Scientists significantly improves students'
understanding of CS, its applications, and practice.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer Science Education

General Terms
Measurement, Design, Human Factors

Keywords
CS for scientists, introductory CS, CS 1 assessment

1. CS FOR SCIENTISTS
Scrutiny seems an unavoidable fate for introductory computer
science. In a field as dynamic as CS, we who teach CS0 and CS1
should strive to remain relevant and current. At the same time, we
try to retain those topics and skills that enable our students to cope
with next year's changes as well as last year's. This balance is
particularly delicate when designing introductory CS for
scientists. The evolving impact of CS on all scientific disciplines
has been dramatic and well documented, e.g., [29][31]. As George
Johnson put it, "All science is computer science." [17]

To leverage CS's growing importance, in 2006 we replaced our
traditional, Java-based, objects-late CS 1 course with a Python-
based, breadth-first course nicknamed CS for Scientists [1]. Our

goal was to create a curriculum "suitable for any student intending
to major in science or engineering (including CS students)." [26]
In particular, we hoped this new offering would (1) develop
programming and problem-solving skills useful across
engineering, mathematics, and the natural sciences, (2) attract
students to continue with CS, and (3) provide a coherent,
intellectually compelling picture of CS, even as final CS course.

1.1 Context and Related Work
It is a wonderful time to teach CS 1! Curricular innovations within
introductory CS are inspiring and numerous. Many of these
experiments draw strength in a similar manner: by weaving a
thematic structure amid introductory CS topics [15][24].

One of the most widespread of these themes for introductory CS
is media computation [14][21]. Other themes now scaffolding
CS1 include games [3][13][19][32], robotics [5], computer vision
[22], and art [12][27]. In each of these cases, the thematic overlay
tends to pull away from CS and toward the specifics of the
course's theme. Throughout CS for Scientists we strove to keep
the focus on CS, with applications motivating that focus.

Science and engineering enjoys a long history as a CS theme
[2][16][20][28]. Yet these experiments, both new and old, tend to
be service courses rather than CS per se, e.g., they do not
contribute to a CS degree. Courses like [8] and [30] present facets
of CS to specialists in other disciplines. Our course, on the other
hand, represents a full-fledged CS 1 designed to generate interest
in and prepare students for additional courses within the field.

Pedagogically popular styles of CS 1, such as imperative-first or
objects-first [10], all make the implicit assumption that there will
be something second. We knew that only a fraction of our
students would continue with CS, though we hoped to make it a
sizeable fraction! We hypothesized that breadth-first would best
suit students for whom the class might also be breadth-last.
Breadth-first CS is far from new. As CC2001 summarizes aptly,

the breadth-first model has not enjoyed the success that its
proponents had envisioned… most breadth-first courses that
exist today seem to be lead-ins to a more traditional
programming sequence. This model, which has several
successful implementations, is outlined in CS100B… [10]

Our CS for Scientists takes this hard-won experience to heart;
CS100B is our curriculum's basis. Yet our course has significant
shifts in emphasis to serve future scientists and engineers: multi-
paradigm programming, leveraging existing code, CS's influence
on science today, and acknowledging the reality that many
students would not be able to take another CS course afterwards.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

Perhaps the work closest to CS for Scientists is Sedgewick and
Wayne's forthcoming text [26] and the Princeton University
course, COS126, from which it has grown. While our debt to
COS126 is strong in spirit, several differences distinguish our
offering. First, rather than work only within the object-oriented
paradigm offered by Java, we take a multiparadigm approach via
Python. Because of this change, we have contributed a freely-
available body of Python software to support our assignments and
laboratories. Further, we have been able to compare students'
academic and affective changes across our old and new offerings.
Here, we report the results of this year-long assessment effort.

1.2 Contributions
This paper presents three specific contributions that CS for
Scientists adds to the efforts begun in [24][35]:

- Complete CS 1 materials. Two fifteen-week sets of labs,
assignments, and lecture slides are freely available [1].

- Student-centric evaluation. We report results from pre- and
post-term metrics of student engagement and understanding.
We have followed retention trends and compared the impact
of the new curriculum with the Java-based course it replaced.

- Tracking gender cohorts. Where possible, these
assessments trace the impacts on women and men both
together and separately.

The data suggest that CS for Scientists succeeds in three ways:
students "get" the importance of CS to their future scientific
endeavors and its importance as a stand-alone discipline; students
succeed in future CS courses to a greater extent; and they continue
studying CS as often – and perhaps more – than from traditional
alternatives. In each measure women benefit at least as much as
men. We hope that this curriculum, its support materials, and its
assessments will be of service to other CS educators serving
future scientists, mathematicians, and engineers.

2. CURRICULUM
186 first-year college students took CS for Scientists in the fall of
2006: all of them are pursuing a degree in some natural science,
i.e., mathematics, engineering, physics, chemistry, biology, CS, or
combinations of these fields. Though scientists for sure, the
majority have not yet chosen their major field of study, a decision
not required until the end of the second year at our institution.

To implement our breadth-first curriculum, we broke the semester
into five three-week units (see Table 1) in which students would
learn and practice different programming paradigms. In order to
support all of these with a minimum of syntactic overhead, we
heed [6] and [9] in choosing a multi-paradigm language, Python.

Table 1. Summary of CS for Scientists' Curriculum

Weeks Paradigm Samples of the labs and assignments

1-3 functional integration, random walks, ciphers

4-6 low-level recursion in assembly, 4-bit multiplier

7-9 imperative Markov text generation, game of life

10-12 objects/classes Connect Four player, sudoku solver

13-15 CS theory uncomputability, finite-state machines

2.1 Modules, example labs, and assignments
To set the stage for the assessment results, we briefly summarize
CS for Scientists's content. Details appear in [1].

While software engineers will persuasively argue that objects and
classes are computation's basic building blocks, practicing
scientists and engineers often have smaller-scale needs, e.g., quick
scripts to analyze, summarize, or reformat data. Our course thus
begins with small, task-specific functions as the basic building
blocks of computation. Turtle graphics, numerical integration, the
Caesar cipher, random walks, and 1d cellular automata exemplify
recursion and functional programming.

The second module, "low-level" computation, reinforces the idea
of modularity and composition via logic gates: students built 4-bit
ripple-carry adders from AND, NOT, and OR gates in Carl
Burch's outstanding Logisim tool [7]. Those adders became
building blocks in 4-bit multipliers. Combinational-circuit design
segues to larger-scale computer architecture: students capped this
experience by implementing recursion (the stack and function
calls) in a Python-based assembly language simulator.

Register-level jmp and cmp assembly instructions transition
naturally to the repetitive control structures and variable
reassignment of imperative programming, our third module.
Students implement the game of life, Gaussian elimination, and
Flesch readability, among other assignments.

Students then augment procedural programming with class- and
object-based constructs. They create a Date class to answer
questions like "how many days apart are June 25, 2007 and
February 30, 1712" and "which day of the week is most likely to
be the 13th of the month."† Implementing Connect Four provides
deeper design practice with both OOP and 2d arrays.

A medium-sized final project further exercises object-oriented
style, with students choosing among three options: a physical
simulator and GUI for a game of pool; a state-based controller
navigating a simulated robot through a continuous environment;
or a finite-automaton simulator, with graphics, of a small space-
filling agent similar to Karel [4].

The finite-state machines used in these latter two final projects
complement in-class exercises on (un)computability and
deterministic finite automata. These lectures, reinforced by final
exam questions, wrap up the term with a bird's-eye view of what
computation can and can't do, e.g., the halting problem and
several other uncomputable functions. Figure 1 shows a few
examples of student work from fall 2006. On average, students
completed four programming problems per week.

Figure 1. Student work from fall 2006's CS for Scientists

L to R: visualizing numeric integration, turtle graphics, a four-bit
multiplier circuit, a Karel-like automaton exploring its world.

† Sweden observed Feb. 30, 1712, which fell 107,852 days before June 25, 2007.

Friday is strictly more common as the 13th than any other day of the week.

3. EXPERIENCES AND EVALUATION
Changing curriculum is one thing; changing students is another.
With our redesign of introductory computer science, we hoped
that students would (1) demonstrate an appreciation for the
diversity of applications and investigations undertaken in CS, (2)
learn a broader and more representative set of computer science
topics, (3) exhibit the programming and computational-thinking
skills required for success in CS 2, (4) choose to continue their
study of CS in greater numbers, and (5) enjoy their CS for
Scientists experience.

We have sought throughout to assess how women have
experienced the course, as distinct from men. Increasing the
number of women majors outranks growth per se as a priority for
our department. We assessed student behaviors through content
exams, opinion questionnaires, course evaluations, per-problem
feedback and scores, enrollment numbers, and head-to-head
comparisons with cohorts from the previous, imperative-first CS 1
curriculum. We next address the five objectives above, in turn.

3.1 Students' appreciation of CS's diversity
In order to evaluate how students' perceptions of computer science
changed through the semester, we asked two questions on both the
first and the last day of classes: "What is computer science?" and
"Describe one thing a researcher in CS might study."

The responses to "What is CS?" have been coded into four levels
of sophistication: Level 1 (none) represents non-answers such as
"the science of computers" or "the study of technology," as well
as purely derivative/analytic ones, e.g., "using code to get
computers to do things" or "figuring out how computers work."
Responses that articulate some of synthesis or breadth within CS
are Level 2 (naive), e.g., "software and hardware design" and
"coding, debugging, and analyzing problems to develop
computer-based solutions." Answers that acknowledged the field
beyond physical computers and their software became Level 3
(basics), e.g., "the study of computational algorithms and their
applications." Finally, the most nuanced answers become Level 4
(details): e.g., "a lot is about general, language-agnostic
algorithms and relative merits of speed and efficiency - in some
cases actually wondering how and if something is possible. CS is
not programming, it is implemented in programming."

Figure 2. "What is CS?" student thoughts, before and after CS 1

For us these results drove home the unexamined preconceptions
that many students bring to a first CS course. Particularly
worrying, though perhaps unsurprising among a science-focused
group, was the commonly held belief that CS is simply tech

support for other disciplines. On the other hand, significantly
more students (t=0.05) cited a computational application per se in
the end-of-term survey; the same significant shift appeared in the
more nuanced understanding of CS as an independent and
compelling field of study. These results suggest that a science-
themed curriculum need not relegate CS as servant to other fields.
Rather, by “starting where the students are,” the curriculum can
leverage existing passions to reframe CS’s many roles among
mathematics, science, and engineering today.

Time-usage surveys reinforce this hypothesis, with CS motivating
the greatest amount of work among first-year students’ courses:

Figure 3. Student-reported hours per week in the required first-
year curriculum. Anticipated grades are in parentheses.

It is unlikely that Figure 3’s data stem from anxiety about passing
the course. On the same survey, students reported their expected
grades in each class: both men and women anticipated higher
grades in CS 1 than in their other classes. Yet these figures speak
only to the new CS for Scientists; previous students did not take
these surveys. The next two questions, on the other hand, directly
contrast student learning between the old and new CS 1 curricula.

3.2 Student learning of CS topics and skills
The 97% passing rate for the new CS 1 suggests that the '06
students might have absorbed a larger, more representative cross-
section of computer science topics. The new course did cover a
strict superset of the topics in the Java-based, imperative-first CS
1 that it replaced. The final exam questions summarize this
concisely in Figure 4. At right are the old vs. new median final
exam scores, along with the median scores for women, men, and
all students in three facets of the course.

Figure 4. Exam topics and performance, new vs. old CS 1

On first blush, the results might seem disheartening: the new final
exam median of 78% is considerably less than the prior exam's
median of 85%. What's more, differences in final exam scores
between male in female students are significant (t=.05), with a gap
of seven points. This might reflect the tendency for men to arrive
at college with more CS experience than women. Indeed, women
averaged higher on HW assignments; differences in overall grades
were not significant.

The drop in exam scores from the previous CS 1 course also
suggests a tradeoff: differences in breadth make it possible that
more material was learned, despite the downward trend in scores.
To test whether breadth really came at the expense of depth, we
compared the student cohorts' CS 2 performances.

3.3 How did students do in CS 2 ?
Our spring 2007 CS 2 course remained unchanged from previous
offerings. Half of CS 2 teaches Java, focusing on object-oriented
design of list and tree data structures, along with graphics and
event-based programming. The other half covers a variety of
topics - graph algorithms, parsing, turing machines, regular
languages, and logic programming - using Scheme, Prolog and
JFLAP. No Python at all is used in CS 2. The spring 2007 CS 2
course comprised 32 students from the new, python-based CS 1
and 13 students from the older, java-based CS 1. Figure 5 reports
midterm and final exam scores from these groups.

Figure 5. Comparing old vs. new CS 1 students within a single

CS 2 course. The size of each cohort appears in parentheses.

The data in Figure 5 confirm our suspicions that using python
early does not disadvantage those students who pursue a typical
CS major. The all-student differences in means in Figure 5 are not
huge, but they are significant at the t=0.15 level. Given that
python was not used at all in CS 2, and that CS 2's largest
emphasis was Java and objects (as in the old CS 1), we feel that
even the lack of statistically significant performance differences
yields a pedagogically significant result.

That only one woman had returned from the previous CS 1
reveals a crucial impetus for our new CS for Scientists curriculum.
That the women from the new CS 1 fared as well as – or better
than – men extends the encouraging findings of [24] that a
compelling thematic structure within CS 1 can serve all students
well, even with a theme as broad as science and engineering.

To be sure, Figure 5’s results showing equal (or better) CS 2
performance after the new CS 1 are meaningful only if students in
comparable numbers continue to pursue CS beyond the first
course. If major numbers drop, after all, it might be self-selection
and not pedagogical effectiveness that explain an increase in
knowledge and skill development.

3.4 Did students continue studying CS?
As of this writing, no students from the ’06 offering of CS for
Scientists have declared a major; that decision comes halfway
through sophomore year. Yet we do have two semesters of CS 2
enrollments: Figure 6 tracks retention into CS 2 during first-year
spring and sophomore fall from 2004 to 2007.

Figure 6. Comparing retention into CS 2 during the first two

terms after CS 1. Only the rightmost data are for the new CS 1.

These retention numbers are among the most disappointing of this
experiment: we had hoped to see significant increases in our CS 2
numbers. Because major choice is a zero-sum game, political
considerations forbid interview or questionnaire investigations for
the reasons behind Figure 6's flatlining. One possibility worth
considering, however, is simultaneously the most humbling and
heartening. Perhaps major choices are both too personal and too
important to depend much on first impressions.

3.5 Affective evaluations
As the CS education community aptly points out, “my students
liked it!” is more anecdote than evidence, particularly in questions
of student learning [18][34]. Although we have sought to reach
beyond opinion for metrics of student change, we also believe that
affect matters. Majors and nonmajors alike will carry their
feelings about CS wherever their future work takes them. Even
students who decide that one term of CS is enough, we hope, will
retain positive associations with the field.

Because this course replaced a procedural-then-objects Java
course, we follow parallel evaluations' lead [11][33] in asking
how student opinion differed between the old and new offerings.
Figure 7 summarizes students' Likert responses from 1 (least
agreement) to 7 (most agreement) with the statements (A) The
course stimulated my interest in the subject matter and (B) I
learned a great deal in this course. Students found CS for
Scientists more compelling and informative both in absolute terms
and relative to the balance of their course loads.

Figure 7. Comparison of student opinions of CS 1 before (2005)

and after (2006) introducing the CS for Scientists curriculum.

Figure 8. Students' perceptions of the importance of CS to them
personally, measured before and after the new course.

We also measured 2006 students' perceptions of CS’s impact on
them personally by asking "how important do you think CS or
programming skills will be in your future" with Likert-scale
scores ranging from 1 – not at all to 7 – very. Figure 8 illustrates
the results from before and after CS for Scientists. While the
means of these before-and-after distributions are identical at 5.1,
their shapes are not. Indeed, the heavier tails on both ends of the

latter scale suggest that more students have “taken sides” as to
whether or not they feel comfortable and eager to build upon their
CS skills in the future.

We believe the breadth-first approach explains both the
improvements of Figure 7 and the allegiance-splitting apparent in
Figure 8. Different students found themselves drawn to different
pieces of the course: some enjoyed the mathematical and
theoretical unit, others preferred the programming and problem-
solving, still others gravitated to the circuit design and
connections with electrical and computer engineering. The
instructors noticed that the changes of pace offered psychological
"breathers" for those students who struggled with the mechanics
and semantics of python, even as coding remained the focus of 13
of the 15 weeks of the course. By the end of the experience,
students felt that they had a strong foundation on which to judge
their personal interest in the field.

4. VERDICT
From these data and in looking back broadly at our initial offering
of CS for Scientists, we are optimistic about its approach to
teaching future scientists introductory computer science. As
always, there remain a number of rough edges that we look
forward to addressing in subsequent offerings.

We recognize, too, that Albert Shankar's infamous dictum, "All
educational experiments are doomed to succeed" plays an
unavoidable role in these assessments. Only time will tell the
extent to which these results are a by-product of novelty and
enthusiasm or results of the structural changes undertaken. We
will track student data through 2007 and 2008 in order to better
understand the underlying factors at work. Similarly, we look
forward to collaborating with other institutions to develop CS 1
curricula that are useful and inspiring for mathematicians,
scientists, and engineers of all stripes.

5. REFERENCES
[1] CS 5 website, https://www.cs.hmc.edu/twiki/bin/view/CS5/WebHome

[2] Bachnak, R. and Steidley, C. An interdisciplinary laboratory for computer
science and engineering technology. Journal of Computing Sciences in
Colleges 17(5) April 2002, 186-192.

[3] Bayliss, J. D. and Strout, S. Games as a "flavor" of CS1. In Proc. SIGCSE
2006; Houston, TX, USAA, 500-504.

[4] Bergin, J., Roberts, J., Pattis, R., and Stehlik, M. Karel++: A Gentle
Introduction to the Art of Object-Oriented Programming. John Wiley & Sons,
NY, NY, 1996

[5] Blank, D. Robots Make Computer Science Personal. Communications of the
ACM 49(12) (Dec. 2006), 25-27.

[6] Budd, T. A. and Pandey, R. K. Never mind the paradigm, what about
multiparadigm languages? ACM SIGCSE Bulletin 27(2) (June 1995), 25-30.

[7] Burch, C. Logisim: a graphical system for logic circuit design and simulation.
Journal on Ed. Resources in Computing (JERIC) A 2(1) (3/2002), 5-16.

[8] Burhans, D. T. and Skuse, G. R. The role of computer science in
undergraduate bioinformatics education. In Proc. SIGCSE 2004; Norfolk, VA,
USAA, 417-421.

[9] Close, R., Kopec, D., and Aman, J. CS1: perspectives on programming
languages and the breadth-first approach. In Proc. CCSCNE 2000; Mahwah,
NJ, USAA, 228-234.

A ACM Press, New York, New York, USA

[10] Computing Curricula 2001. Journal on Educational Resources in ComputingA,
Joint Task Force on Computing Curricula, eds. Volume 1, Issue 3es.

[11] Crescenzi, P., Loreti, M. and Pugliese, R. Assessing CS1 java skills: a three-
year experience. In Proc. ITiCSE 2006; Bologna, ItalyA, 348.

[12] Davis, T. A. and Kundert-Gibbs, J. The role of computer science in digital
production arts. In Proc. ITiCSE 2006; Bologna, ItalyA, 73-77.

[13] Giguette, R. The Crawfish and the Aztec treasure maze: adventures in data
structures. ACM SIGCSE Bulletin 34(4) (Dec. 2002), 89-93.

[14] Guzdial, M. A media computation course for non-majors. In Proc. ITiCSE '03;
Thessaloniki, GreeceA, 104-108.

[15] Guzdial, M. and Tew, A. E. Imagineering inauthentic legitimate peripheral
participation: an instructional design approach for motivating computing
education. In Proc. ICER 2006; Canterbury, UKA, 51-58.

[16] Jehn, L. A., Rine, D. C., and Sondak, N. Computer science and engineering
education: Current trends, new dimensions and related professional programs.
In Proc. SIGCSE 1978; Pittsburgh, PA, USAA, 162-178.

[17] Johnson, George. All Science is Computer Science. New York Times March
25, 2001.

[18] Kinnunen, P., McCartney, R., Murphy, L., and Thomas, L. Through the eyes of
instructors: A phenomenographic investigation of student success. In the
proceedings of ICER, September 14-15, 2007, Atlanta, GA, USAA

[19] Ladd, B. C. The curse of Monkey Island: holding the attention of students
weaned on computer games. Journal of Computing Sciences in Colleges 21(6)
(June 2006), 162-174.

[20] Lambrix, P. and Kamkar, M. Computer science as an integrated part of
engineering education. In Proc. ITICSE 1998; Dublin, IrelandA, 153-156.

[21] Matzko, S. and Davis, T. A. Teaching CS1 with graphics and C. In Proc.
ITiCSE 2006; Bologna, ItalyA, 168-172.

[22] Olson, C. F. Encouraging the development of undergraduate researchers in
computer vision. In Proc. ITiCSE 2006; Bologna, ItalyA, 255-259.

[23] Paul, J. Leveraging students' knowledge: introducing CS 1 concepts. Journal
of Computing Sciences in Colleges 22(1) (Oct. 2006), 246-252.

[24] Rich, L., Perry, H., and Guzdial, M. A CS1 course designed to address
interests of women. In Proc. 35th SIGCSE '04, March 3-7, Norfolk, Virginia,
USAA,190-194.

[25] Scherer, D., Dubois, P., and Sherwood, B. VPython: 3D interactive scientific
graphics for students. Computing in Science and Eng. 2(5) 2000, 56-62.

[26] Sedgewick, R. and Wayne, K. Introduction to Programming (in Java),
preliminary version, Pearson Addison Wesley, 2006. ISBN 0-536-31807-7.

[27] Smith King, L. A. and Barr, J. Computer science for the artist. In Proc.
SIGCSE 1997; San Jose, CA, USAA, 150-153.

[28] Stevenson, D. E. Science, computational science, and computer science: at a
crossroads. In Proc. ACM '93; Indianapolis, IN, USAA, 7-14.

[29] Steering the future of Computing. Nature 440(7083) (March 2006 special issue
on 2020 Computing), 383-580.

[30] Tesser, H., Al-Haddad, H. and Anderson, G. Instrumentation: a multi-science
integrated sequence. In Proc. SIGCSE 2000; Austin, TX, USAA, 232-236.

[31] Towards 2020 Science, by the 2020 Science Expert Group. Microsoft Press,
Redmond, WA, USA. 2006.

[32] Wallace, S. A. and Nierman, A. Addressing the need for a java based game
curriculum. Journal of Computing Sciences in Colleges 22(2) 12/2006, 20-26.

[33] Weir, G. R. S., Vilner, T., Mendes, A. J., and Nordström, M. Difficulties
teaching Java in CS1 and how we aim to solve them. In Proc. ITiCSE '05;
Caparica, PortugalA, 344-345.

[34] Winters, T. and Payne, T. What do students know? An outcomes-based
assessment system. In Proc. ICER 2005, Oct. 1-2, Seattle, WA, USAA, 165–
172.

[35] Zelle, J. Python Programming: An Introduction to Computer Science.
Franklin, Beedle & Associates. Wilsonville, OR. 2004. ISBN 1-887902-99-6.

