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Abstract 
This paper describes a recently developed toolkit for creating environmental maps of indoor environments from 
image sequences. First, the chosen map representation – texture-mapped planes located in a single coordinate 
frame – is placed within the broader context of appearance-based and sparse feature-based visual mapping 
approaches. Drawing from the well-developed field of structure-from-motion, an algorithm is presented for 
building such maps with a limited sensor suite: monocular vision and odometry. Maps validating this approach 
are presented, along with task-independent metrics made possible by the representation. We evaluate our maps 
according to these metrics and conclude with implications for future sensor-limited spatial reasoning. 

Keywords: vision-based robot mapping, monocular vision, map representation, map evaluation, structure 
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1 Introduction and Related Work 
Despite cameras’ long history as a robotic sensor, 
e.g. [1,2], important questions in visual map-
building still remain. A fundamental issue is that of 
representation: when should spatial reasoning occur 
directly via image features and when should it 
occur in a Euclidean coordinate system attached to 
the robot or its surroundings? This paper describes 
ongoing work in building representations that 
support both types of reasoning, i.e., dense, 
metrical visual maps. 

  

 
Figure 1: A laptop-controlled ER1. In each image 
the robot is at L; V is the viewpoint shown at right. 
The USB camera and odometry contribute to map-
building, and short-range IRs help with exploration.  

Our focus is on map-building with monocular 
vision and odometry; figure 1 depicts a typical 
setting. Such a limited sensor suite offers several 
advantages: it is inexpensive, at ~US$300 off-the-
shelf, there is no multiview calibration to maintain, 
it facilitates miniaturization [3], and it allows a 
variety of task-specific form factors, e.g. [4,5]. 

Research into visual mapping with these types of 
platforms can be categorized by choices in map 
representation. Figure 2 locates several comparable 
vision-based robotic systems along two axes: the 
density of maps’ stored image information and the 
modeling tradeoff between images and objects. 
Maps to the upper right of this taxonomy preserve a 
sparse set of 2d image regions and their summary 
statistics, e.g., SIFT features [6,7], SSD patches [8], 
and image histograms [7,9], all of which benefit 
from fast matching against similarly processed 
input images. Global geometric relationships in 
these systems are ad hoc, typically via 
environment-specific adjacency graphs [10]. 

Figure 2’s upper-left systems similarly represent 3d 
space primarily in terms of images, not objects, but 
they employ subspace methods such as PCA 
[11,12] to distill image data without token 
extraction. In order to explain visual changes 
without modelling the camera, extended 
environments need considerable visual exploration 
[13,14,15], but can handle substantial image 
variation as a result [16]. A hybrid image-based 
approach interpolates among appearance variations 
in patches of high local edge density to identify 3d 
poses from 2d image regions [17]. 

Maps at the lower right of the taxonomy maintain 
global 3d coordinates of a sparse set of visually 
distinct features, e.g., points [18], lines [19,20], or 
color transitions [21]. Though naturally supported 
by stereo [18,22,23], monocular approaches also 
exist [24]. Both can benefit from the anticipatory 
rendering available from the computed 3d structure, 
e.g., [25]. 



Indeed, environmental rendering -- either for 
human or algorithmic use -- is an important 
motivation for methods that explicitly map the 
positions and visual properties of scene surfaces, 
i.e., the lower left corner of figure 2. Dense 3d 
maps further allow explicit reasoning about the 
environment’s geometry, e.g., for motion planning 
or map evaluation via ground-truth comparisons. 
Perhaps most important is such maps’ ability to 
integrate disparate sensory information by not tying 
environmental representation to a particular sensor. 
Recent systems have exploited this strength to build 
impressive models with stereo cameras [23], laser 
range finders [26,27], panoramic vision [28,29] or a 
combination of these [30,31,32]. 

This paper focuses on the more modest capability 
of monocular vision, a sensor suite less fully 
explored for robotic mapping. In part, this stems 
from its well-established niche within vision’s 
structure-from-motion (SFM) subfield. Indeed, in 
this work we adapt traditional SFM approaches 
[33,34,35] to datasets more typical of robotic 
applications, i.e., odometrically annotated scenes of 
planar indoor environments. Other researchers have 
pointed single cameras toward the floor [36] and 
ceiling [37]; our approach is similar, but exploits 
the visual and geometric salience of the walls 
between those two extremes.  
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Figure 2: A taxonomy of visual map-building 
approaches organized by coordinate systems used 
and the density of visual information maintained. 

2 Monocular map-building 
Here we describe our mapping toolkit, noting its 
differences from traditional structure-from-motion 
approaches. Figure 3 charts the flow of information 
through the system; section 3 will present 
intermediate and final results validating the 
approach. The data sets and complete source code 
(C++ for Windows) including visualization tools 
are available at www.cs.hmc.edu/wart. 
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Figure 3: A summary of the steps our system takes 

to build dense visual maps from monocular data 
and odometry, adapted from the SFM approach in 
[33]. Indicated figures depict intermediate results. 

Processing begins with feature identification and 
tracking; we employ Birchfeld’s KLT tracker [38] 
on the input image sequence, Ii. Images are taken 
~1 second apart during autonomous exploration, 
corresponding to about 20cm of camera 
displacement. The tracker’s outputs, pi

j, are the 
(x,y)-coordinates of the jth feature point in the ith 
image, Ii. It is important that these indices apply 
across the full image sequence, so that if feature j 
does not appear in Ii, the corresponding pi

j is 
marked as null. Though this differs from the 
assumptions made for single-object modelling by 
standard techniques such as [39], bookkeeping for 
feature dropouts is crucial when modelling an 
extended environment within which occlusions 
necessarily occur. 

These image features pi
j are next mapped into a 

global frame of reference by triangulation. 
Odometry provides extrinsic camera rotations Ri 
and translations Ti for each image. Offline 
calibration [40,41] yields the camera’s intrinsic 
parameters, K, which are presumed constant. 
Neither odometry nor K are strictly necessary, 
however, since all of the parameters may be 
estimated up to a scale factor from image 
information alone [33]. In either case, least-squares 
estimation allows all available image data to 
contribute to the 3d coordinates, Pj, of the image 



features pi
j in the odometry’s global coordinate 

frame: 

         pi
j  =  K [ Ri | - RiTi ] Pj                         (1) 

As equation 1 suggests, correspondence is 
preserved between image and 3d point locations. 
The output Pj, in turn, are fed to a plane extractor, 
where the system assumes the environment is 
piecewise planar. For indoor, hallway-dominated 
scenes such as those in figure 1, this is a reasonable 
assumption. Note that a dense stereo matcher, e.g., 
one of the many evaluated in [42], would eliminate 
this restriction. 

The plane extractor hypothesizes clusters of planes 
with RANSAC [43] and judges each cluster with 
several heuristics: points’ 3d proximity, the 
tendency of indoor environments’ surfaces to be 
parallel or perpendicular to one another, and the 
low likelihood that a point is shared by more than 
one plane. These heuristics contribute to a fitness 
function that scores assignments from points to 
planes: πk(Pj) = 1, if Pj is on plane πk, and πk(Pj) = 0 
otherwise. An additional cluster π∅ gathers outliers. 
Of 5,000 possible assignments of the point set to 
planes πk, the best fit is preserved as the planar 
environmental map.  

While the Pj themselves suffice to represent 
environmental structure, the advantage of this 
plane-fitting step is that a much denser, but still 
geometrically accurate, visual representation is 
possible through image mosaicking. Homographies 
Hi

k are computed via least-squares between images 
Ii and planes πk that share feature points [33]: 

         πk(Pj)  =  Hi
k pi

j                                             (2) 

Here πk(Pj) represents the local coordinates of Pj 
within a 2d coordinate frame attached to πk. 
Assuming Lambertian surfaces, the homographies 
provide radiosity correspondence between each 
plane’s image Ik and the input images, Ii: 

         Ik(x)  =  Ii(Hi
k

-1(x))                                       (3) 

This mapping of color to the estimated 3d structure 
is the job of the mosaicker. Our implementation 
creates a single composite image for each plane πk 
by averaging corresponding in-bounds pixels from 
each input image. The result is an image Ik that 
holds the map’s surface properties. 

3 Results and Evaluation 
These texture-mapped planes constitute a dense, 3d 
representation of the environment. Figure 7 shows a 
partial map of a lab resulting from a short run at a 
distance of 2m. Intermediate figures present the 
output from each of figure 3’s modules. The robot’s 
path, the left-facing camera poses, and two 
representative snapshots with tracked features are 
shown in figure 4. Figure 5 depicts two views of the 
3d point clouds triangulated from these tracked 
features, along with similar views of the best-fit 
planes. Points on the foreground computer monitor 
have been removed as outliers.  

Figure 6 illustrates a texture for the “red” plane (the 
whiteboard) created by homography estimation 
using the points in green, followed by mosaicking. 
This texture is then rendered in figure 7’s final 
map. Fully saturated green pixels represent areas 
for which no image information is available. These 
regions could be used by the system, e.g., to guide 
further exploration, though such behavior has not 
been explored in our implementation. In contrast to 
approaches elsewhere in figure 2’s taxonomy, the 
texture-mapped representation illustrated here 
allows the rendering of viewpoints far from those 
observed during exploration, e.g., a top-down view. 

As noted in the introduction, a further benefit of 
these maps is the ability to evaluate them against 
ground truth. This kind of task-independent 
evaluation, we feel, is an important and 
underinvestigated facet of reusable robotics 
algorithms. Figure 9 summarizes the feature 
position errors between hand-measured “truth” and 
the structure estimated in figure 7’s map.  

 
 

  
Figure 4: Corresponding KLT features found by the tracking module between two of the lab sequence’s input 

images. The two views (L and R) are marked within the robot’s complete 1.5m run in the schematic on the right 



A second, mapping run appears in Figure 8, where the 
robot has explored a hallway (the yellow path portion 
shown in figure 1) by wall-following and obstacle 
avoidance with short-range IR sensors. Although 
figure 8’s map consists of only one plane, it 
demonstrates the ability of the mosaicker to create 
single-image representations of environments too 
large for the camera to capture at one.  

The error discrepancies demonstrate another benefit 
of the maps of figures 7 and 9: an explicit measure of 
available visual resolution can be computed for each 
rendered point. By accounting for the 3d location of 
the imaged surface and the pose of the camera that 
gave rise to its estimated radiosity, this resolution can 
be expressed for each contributing image in units of 
pixels/cm. With an available resolution of ~2.1 
pixels/cm along the whiteboard in the lab corner map, 
figure 9 indicates that about 7 pixels of discrepancy 
between model and truth have accumulated through 
the map-making process (and in estimating by hand 
the 3d points the tracker found in the images).  
Further reasoning based on such maps can take 
advantage of this measure of available visual 
resolution, e.g., to motivate uncertainty models for 
probabilistic visual/spatial reasoning.  

  

  
Figure 5: Two views of the point cloud resulting 
from triangulation (top) and plane assignments 

(bottom). The colors are as in figure 4’s floorplan. 

 

 

 
Figure 6: An uncropped, mosaicked texture from the 

lab sequence using only feature points from the 
whiteboard plane. Alignment is quite consistent on 
that plane, but not on other planes (as expected). 

  

 
Figure 7: Renderings of the final “lab-corner” map 

with cropped textures from the two dominant planes. 
A benefit of the combined image-based and/geometric 
representation is the possibility of rendering views far 
from any of the input images, e.g., the lower image. 

 

 
Figure 8: Rendering of the “hallway” map. Though only a single plane, this map fuses the 10 images from the 
red portion of the path in figure 1. To the left appear the visual repercussions of a rotation not modeled by the 

robot’s odometry. Such artefacts argue for adjusting the odometric poses based on future data, i.e., SLAM.



 
Figure 9: The average feature location error taken 

over 12 features from the whiteboard plane is 2% of 
the distance to the surface imaged, or 3.5 cm. Real 

locations are green with corresponding estimates red.  

4 Perspective 
Section 3 highlights some of the advantages of the 
mapping system described in this work: task-
independent evaluation, anticipatory rendering from 
unseen poses, and a complete yet compact 
representation of both geometric and visual data. On 
the other hand, our system has several limitations: the 
planarity assumption, the lack of past pose adjustment 
given future image data (SLAM), and computational 
cost – the system now runs offline at about ~10s per 
image. Though they use different representations 
and/or sensor suites, the successes of [24,27,31] 
demonstrate that each of these problems stem from 
our current implementation and are not inherent in the 
proposed approach. 

Ultimately a multiresolution representation, as in [26], 
will likely emerge to combine sparse features for 
initial indexing and dense data for more involved 
visual/spatial reasoning and display. Both object- and 
image-based representations will play a role in such 
maps, as will axes not represented in figure 2. For 
instance, Sim suggests a “spectrum of prior 
information” [44], which would generalize the planar 
assumptions made here. Efforts that fuse structure-
from-motion and autonomous mapping, we believe, 
will continue to advance the capabilities of low-cost 
robotic systems. 
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