CS 105

Machine-Dependent Optimization o

“Tour of the Black Holes of Computing” Need to understand the architecture
Not portable
Machine-Dependent Optimization Not often needed

...but critically important when it is

Also helps in understanding modern machines

_o- CS 105
HAC. €5}y BAC Sy

Modern CPU Design {2} Superscalar Processor {2}
(©) (©]
Instruction Control

Unit
[

File

Retirement

Address

Instruction
Instruction JLATeIAlaed Cache
Decode

Operations

Register Updates

Prediction OK?

])

Operation Results

p-

| Addr |

Data Data

Data
Cache

Execution

CS 105

Definition: A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved from a
sequential instruction stream and are usually scheduled dynamically.

Benefit: without programming effort, superscalar processor can take
advantage of the instruction-level parallelism that most programs have

Most modern CPUs are superscalar.
Intel: since Pentium (1993)

CS 105

HiC_CS))

What Is a Pipeline? {4}

o| |

Result
Bucket

-5- CS 105

Pipelined Functional Units

long mult_eg(long a, long b, long c) {
long pl = a*b;
long p2 = a*c;
long p3 = pl * p2;
return p3;

1 2 \ 3 4 5 6 7
2
Stage 1 a*b a ’pl;p
Stage 2 arb BAC pl*p2
Stage 3 a*b a*e Pl*p2

m Divide computation into stages (e.g., one per partial product in multiplication)

m Pass partial computations from stage to stage

m Stage i can start new computation once values passed to i+1

= Here, we complete 3 multiplications in 7 cycles, even though each requires 3 cycles

-6- CS 105

HiC_CS))

Haswell CPU {5

= 11 functional units in total

Multiple instructions can execute in parallel
2 load, with address computation
1 store, with address computation

4 integer
2 FP multiply
1FP add
1 FP divide

Some instructions take > 1 cycle, but can be pipelined
Instruction Latency Cycles/Issue
Load / Store 4 1
Integer Multiply 3 1
Integer/Long Divide 3-30 3-30
Single/Double FP Multiply 5 1
Single/Double FP Add 3 1

_7- Single/Double FP Divide 3-15 3-15 €S 105

HiC_CS))

x86-64 Compilation of Combine4 {4}

O
Inner Loop (Case: Integer Multiply)
.L519: # Loop:
imull (%rax,%rdx,4), %ecx # t =t * d[i]
addg $1, %rdx # i+t
cmpg %rdx, %rbp # Compare length:i
ig .L519 # If >, goto Loop
Method Integer Double FP
Operation Add Mult Add ult|
Combine4 1.27 3.01 3.01 (\531*
Latency 1.00 3.00 3.00 5.00
Bound
_8- CS 105

HiC_CS))

HiC_CS))

. . . *) .)
Combine4 = Serial Computation (OP = *) £ Loop Unrolling (2x1) {15}
@} O
1d, Computation (length=8) void unroll2_combine (vec_ptr v, data_t *dest)
(e * d[o1) * d[i1) * d[2]1) * d[3]1) {
* d[4]) * d[5]) * d[6]) * d[7]) long length = vec_length(v);
long limit = length-1;
H data_t *d = get_vec_start (v);
(*)a, Sequential dependence it 01 O ey
m Performance: determined by latency of OP long i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x = (x OP d[i]) OP d[i+l];
}
/* Finish any remaining elements */
for (; i < length; i++) {
x = x OP d[i];
}
*dest = x;
}
Perform 2x more useful work per iteration
-9- CS 105 -10- CS 105
HAC. €5}y BAC Sy
. ; . . . s 5
Effect of Loop Unrolling {5} Loop Unrolling with Reassociation (2x1a) {1
@} O
Method Integer Double FP void unroll2a_combine (vec_ptr v, data_t *dest)
{
Operation Add Mult Add Mult long length = vec_length(v);
; long limit = length-1;
Combine4 1.27 3.01 3.01 5.01 data t *d = get_vec_start(v);
Unroll 2x1 .01 3.01 3.01 5.01 data_t x = IDENT;
long i;
Latency 00| 3.00 3.00 5.00 /* Combine 2 elements at a time */ Comnareto before
Bound for (i = 0; i < limit; i+=2) {
x = x OP (d[i] OP d[i+1]); x = (x OP d[i]) OP d[i+1];
}
‘x = (x op d[i])/op §[i+1]; /* Finish any remaining elements */
H = . . for (; i < length; i++) {
Helps integer add by reducing number of overhead instructions , x = x OP d[il;
= (Almost) achieves latency bound *dest = x;
[}
Others don’t improve. Why? | -
= Still sequential dependency Can this change result of computation?
11 S 105 _12— Yes, for multiply and for floating point. Why? S 105

HiC_CS))

HiC_CS))

- -) = -)
Effect of Reassociation £ Reassociated Computation o
@} O
Method Integer Double FP What changed:
Operation Add Muit Add Muit x = x OP (d[i] OP d[i+1]); = Operations in the next iteration can be
Combine4 1.27 3.01 3.01 5.01 started early (no dependency)
Unroll 2x1 1.01 /3.0J.¥,_3..01 5.0T>
Unroll 2x1a 1.01 m 1.51 2.51 Overall Performance
'.5?3,','5" 1.00 3.00 - -00 u N elements, D cycles latency/op
m (N/2+1)*D cycles:
'éhroughput 0.50 1.00 1.00 0.50 (CPE =)D/2 4
oun
|3
Nearly 2x speedup for Int *, FP +, FP *
. : 2 functional units for FP *
= Reason: Breaks sequential dependency 2 functional units for load
lx = x OP (d[i] OP d[i+1]);
4 functional units for int +
= Why is that? (next slide) 2 functional units for load
-13- CS 105 —-14- CS 105
Loop Unro"ing er')CS[Eff M‘)CS[
: {2} ect of Separate Accumulators {2}
with Separate Accumulators (2x2) o P o
void unroll2b_combine (vec_ptr v, data_t *dest) Method Integer Double FP
{ VT Fror it i T) Operation Add Mult Add Mult
long limit = length-1; ' Combine4 127 3.01 3.01 5.01
data_t *d = get_vec_start (v);
data_t x0 = IDENT; Unroll 2x1 1.01 3.01 3.01 5.01
data_t x1 = IDENT; Unroll 2x1a 1.04 1.51 1.51 2.51
long i;
/* Combine 2 elements at a time */ Unroll 2x2 < 0.81 j 1.51 1.51 2.51
for éi = g;oxia ;[_l?“‘it" i+=2) { Latency Bound 1200 3.00 3.00 5.00
x0 = x i]l;
x1 = x1 OP d[i+1]; Throughput Bound 0.50 1.00 1.00 0.50
}
é::“(f‘i:“:'l‘in;::?i;i:? glements */ Int + makes use of two load units
x0 = x0 OP d[il; x0 = x0 OP d[i];
} x1 = x1 OP d[i+l];
*dest = x0 OP x1;
}
Diff ; r — 2x speedup (over unroll2) for Int *, FP +, FP *
15 ifferent form of reassociation 5105 e s 105

HiC_CS))

HiC_CS))

Separate Accumulators £ Unrolling & Accumulating o
(©) (©]
Idea
x0 = x0 OP d[i]; = What changed: = Can unroll to any degree L
x1 = x1 OP d[i+l]; ® Two independent “streams” of operations u Can accumulate K results in parallel
= L must be multiple of K
m Overall Performance
= N elements, D cycles latency/operation
- zlr\,(;uidnk/); (N/2+1)*D cycles: Limitations
= CPE matches prediction! m Diminishing returns
e Cannot go beyond throughput limitations of execution units
= May run out of registers for accumulators
What Now? m Large overhead for short lengths
o Finish off iterations sequentially
-17- CS 105 -18- CS 105
BAC €Sy BAC Sy
Unrolling & Accumulating: Double * {2} Unrolling & Accumulating: Int + {2}
(©) (©]
Case Case
u Intel Haswell u Intel Haswell
= Double FP Multiplication = Integer addition
= Latency bound: 5.00. Throughput bound: 0.50 = Latency bound: 1.00. Throughput bound: 1.00
FP * Unrolling Factor L FP * Unrolling Factor L
K 1 2 3 4 6 8 10 12 K 1 2 3 4 6 8 10 12
1 501 501 501 501 501 501 5.01 1 127 101 101 101 101 101 1.01
2 2.51 2.51 2.51 2 0.81 0.69 0.54
3 1.67 3 0.74
Number of 4 1.25 1.26 Number of 4 0.69 124
Accumulators 6 0.84 0.88 Accumulators 6 0.56 0.56
8 0.63 8 0.54
10 0.51 10 0.54
12 0.52 12 0.56
-19- CS 105 -20- CS 105

HiC_CS))

HIC €Sy
- S !
Achievable Performance o1 What About Branches?
@}
Method Integer Double FP Challenge
Operation Add Mult Add Mult mInstruction Control Unit must work well ahead of Execution Unit
Best 0.54 1.01 1.01 (_ 0.52 to generate enough operations to keep EU busy
Latency Bound 1.00 3.00 3.00 ~5.00|
404663: mov $0x0, Seax Executing
Throughput Bound 0.50 1.00 1.00 0.50 404668: cmp (%rdi), %rsi
40466b: jge 404685 «—t How to continue?
40466d: mov 0x8 (%rdi) , $rax
Limited only by throughput of functional units
Up to 42X improvement over original, unoptimized code
404685: repz retqg
nWhen encounters conditional branch, cannot reliably determine where to continue
fetching!
-21- CS 105 —-22- CS 105
BAC. S}y HAC_CS)y
H))
Modern CPU Design {2} Branch Outcomes {2}
@} O

Instruction Control

Retirement
Unit
Register Instruction
File Decode

Address

Instruction

Instructions Cache

Operations

Register Updates

Prediction OK?

T
— Functional
Units

ENEARaES

])

—23-

Operation Results

Addr, Addr |

Execution

Data Data

Data
Cache

CS 105

» When encounter conditional branch, cannot determine where to continue fetching
e Branch Taken: Transfer control to branch target
e Branch Not-Taken: Continue with next instruction in sequence

m Cannot resolve for sure until outcome determined by branch/integer unit

404663: mov
404668: cmp
40466b: jge
40466d: mov

$0x0, $eax
(%rdi), $rsi
404685 —_—

0x8 (%rdi) , $rax ? Branch Not-Taken

Branch Taken

404685: repz retqg

—24- CS 105

HAIC_ €Sy
n

Branch Prediction

Idea
m Guess which way branch will go

m Begin executing instructions at predicted position
e But don’t actually modify register or memory data

HAIC_ €83y
n

Branch Prediction Through Loop

401029: vmulsd (%rdx),$xmm0, $xmm0 Assume
40102d: add $0x8, srdx vector length = 100
401031: cmp %$rax, $rdx .

401034: 3ne 401029 i=98

7 Predict Taken (OK)

401029: vmulsd (%rdx), $xmm0, $xmmO
40102d: add $0x8, $rdx
401031: cmp $rax, $rdx

401034: 3ne 401029 i=99

404663: mov $0x0, Seax ﬁ Predict Taken
404668i cmp (o) o oL . 401029: vmulsd (%rdx),Sxmm0, Sxmm0 (Oops) T
AA8 ST e — Predict Taken 40102d: add $0x8, %rdx
40466d: mov 0x8(%rdi),%rax £01031: cmp %rax, $rdx Read Executed
401034: jne 401029 i=100 invalid
location
Begin 401029: vmulsd (%rdx), $xmm0, $xmm0
404685: repz ret N g ’ ’
P 5 } Execution 40102d: add $0x8, %rdx Fetched
401031: cmp $rax, $rdx . _I_
401034: jne 401029 i=101
-25- €S 105 —26- €S 105
HAC_CS)y C_CS)y
401029: vmulsd (%rdx),$xmm0, $xmm0 Assume
40102d: add $0x8, srdx vector length = 100 401029: vmulsd (%rdx), $xmm0, $xmm0
401031: cmp $rax, $rdx . 40102d: add $0x8, $rdx .
5 i=98 i=99 -
401034: jne 401029 401031: cmp $rax, $rdx Definitely not taken
7 Predict Taken (OK) 401034: jne 401029
redict Taken 401036: 5 40104 g
401029: vmulsd (%rdx),%xmm0, $xmm0 ? ?Bf T 01040 'fe“}ad
APEER e G, O 401040: vmovsd %$xmm0, ($r12) Pipeline
401031: cmp $rax, $rdx .
401034: jne 401029 i=99
ﬁ Predict Taken
PPN e - (Oops) Performance Cost
40102d+—add $0x8%rd = Multiple clock cycles on modern processor
G 7 i=100 m Can be major performance limiter
ﬁ Invalidate m Current CPUs (2019+) speculate 750 or more instructions ahead!
401029+ Led(Yrdi), Summo, Lrmmo = One of the motivations for introducing conditional move (cmov) instructions
401024 dd $028, Y=d
401034+ 3ne— 401029 i=101
-27- €S 105 28— €S 105

Visualizing Operations A
o AN o

load (%rax,%zdx.0,4)d t.1
imull t.1, %ecx.0 > Secx.l
incl %rdx.0 2 %rdx.1
cmpl %rsi, %rdx.1 2 cc.1
jl-taken cc.1l

HiC_CS))

3 lterations of Combining Product B3

trane Unlimited-Resource
Analysis
= Assume operation can
start as soon as
operands available

Trax T

Tnc

rax.3
cc.2) =

Time m Operations for multiple
Operations iterations overlap in
imall = Vertical position denotes time at which time
executed _ _) Performance
N secx.1 e Cannot begin operation until operands o imal1 |i=1 o
available 10 Cydle m Limiting factor
srex.2 becomes latency of
H 11
m Height denotes latency . — integer multiplier
Operands s = Gives CPE of 4.0
m Arcs shown only for operands that are 14
passed within execution unit 15 |,
_29- €s 105 -30- teration 3 Cs105
HAC. €5}y HAC. €S}y
- . 3 . . . - 5
4 lterations of Combining Sum {2} Combining Sum: Resource Constraints {2}
(©) (©]
_integer ops | e
~Tieration 2 v
Iteration 5
7 Iteration 3 P . et -
Iteration 4 * I(erahun-e
. . . 15 s
Unlimited-Resource Analysis = Suppose only have two integer functional units
Performance = Some operations delayed even though operands o
available
m Can begin a new iteration on each clock cycle L [y
i n Set priority based on program order ¥ .
= Should give CPE of 1.0 reraton
= Would require executing 4 integer operations in parallel Performance
s cS 105 g m Sustains CPE of 2.0

CS 105

HiC_CS))

HiC_CS))

- - - ; 4 - -)
Visualizing Parallel Loop {2 Executing with Parallel Loop {2
vedx. 0 O e 0 ©)
= Two multiplies within loop no longer Sedx.1 ! m
have data dependency 2 ? (addl)lvemes
= Allows them to pipeline i -
tecx.0 load 4 seno]
%ebx.0 E:i
t.1b 6
imull Time 7
8 Note: actually
s : ol
shows. y?
load (%eax,%edx.0,4) = t.la reex.d 10
imull t.la, %ecx.0 2> Secx.l L V) ebx.1 1
load 4 (%eax, %edx.0,4) = t.1b 12
imull t.1b, %ebx.0 = %ebx.1
iaddl $2, %edx.0 > %edx.1 m Predicted Performance
cmpl %esi, %edx.1l = cc.1l ® Can keep 4-cycle multiplier busy performing two simultaneous
jl-taken cc.1l multiplications
e GivesCPEof20 oo "
-33- €S 105 —34- b CS105
Iteration 3
BAC €Sy HAC. €S}y
. .) . 2
Getting High Performance {2} Meltdown and Spectre: Background {2}
(©) (©]
Use a good compiler and appropriate flags Consider a few things
Don’t do anything stupid m Access to cached things is mu_ch fa_stfer trran to no_n-cached ones
m Watch out for hidden algorithmic inefficiencies (big-O still matters!) = Programs have acces§ to detailed timing information
i i R o Intel offers free-running cycle counter to all programs
= Write compiler-friendly code ® Thus, can tell whether something was cached
e Watch out for optimization blockers: procedure calls & memory references .
i . m OS has access to everything
= Look carefully at innermost loops (where most work is done) o Carefully checks whether you have access before giving stuff to you
Tune code for machine m CPU speculates many instructions ahead
» Exploit instruction-level parallelism ® Must guess about b_ranch directions)))
= Avoid unpredictable branches m User programs can either flush cache (c1£1ush instruction) or clobber with loop
m Make code cache-friendly
But DON’T OPTIMIZE UNTIL IT’'S DEBUGGED!!!
€S 105 -36- €S 105

—35-

HiC_CS))

Meltdown and Spectre {5}

Trick OS into doing these steps:
m Check whether you have access to arbitrary location x (you don’t)
m Mispredict that branch

= Read location x and use its contents as follows:
e Extract bit b
o Multiply (shift left) bit b by, e.g., 1024
e Access array y[b*1024] that you do have access to
= Hardware will eventually discover mispredicted branch and cancel all those
instructions
® ...but cache now contains y[b*1024]

Scan cache to see whether y[0] or y[1024] is fast (i.e., in cache)
= You now know bit b of location x
m Lather, rinse, repeat until you know all bits of x

m Lather, rinse, repeat for all locations you want to read
-37- €S 105

So What?

Can read arbitrary memory at about 2K bits/second
= No biggie on your laptop
m Huge issue in the cloud
o Physical machines often shared
e Supposedly isolated by virtual-machine technology
m Grab people’s encryption keys, passwords, all sorts of stuff
= Next stop: Putin

What to do?
= Disabling speculation kills performance
= Only certain branches are vulnerable
e Can do special things for those branches
© But hard to find (millions of lines in kernel)

= Compiler can try to identify risky branches

e But will be conservative & OS will slow down
—-38-

HiC_CS))

CS 105

