CS 105, Fall 2005
Lab 1: Manipulating Bits
See class calendar for lab and due dates

September 7, 2005

6:55 PM

Geoff Kuenning ¢geoff@cs.hmc.edu) is the lead person for this assignment.

I ntroduction

The purpose of this assignment is to become more familiar with bit-level regegigsms and manipulations.
You'll do this by solving a series of programming “puzzles.” Many of thpaezles are quite artificial, but
you'll find yourself thinking much more about bits in working your way thgbuhem.

L ogistics
You MUST work in a group of at least two people in solving the problems figrdksignment. The only

“hand-in" will be electronic. Any clarifications and revisions to the assigmmell be posted on the course
Web pageWe strongly recommend that you and your partner brainstorm before coding.

Handout I nstructions

The materials for the data lab are on the Web at:

http://www.cs.hmc.edu/ ~geoff/cs105/labs/lab01-data/datalab-handout.
tar

Start by downloadinglatalab-handout.tar to a (protected) directory in which you plan to do your
work. Then give the commandar xvf datalab-handout.tar . This will cause a number of files
to be unpacked in the directory. The only file you will be modifying and turiing bits.c

The filebtest.c allows you to evaluate the functional correctness of your code. THeRERDMEontains
additional documentation abobtest . Use the commandmake btest to generate the test code and
run it with the command:/btest . The filedlc is a compiled binary that you can use to check your
solutions for compliance with the coding rules. (NOTHc is used by the auto grader, so be sure to check
your solution file prior to submission). The remaining files are used to btéist

Looking at the filebits.c you'll notice a C structuréeam into which you should insert the requested
identifying information about the individuals comprising your programming teBm this right away so
you don't forget.

Thebits.c file also contains a skeleton for each of the 15 programming puzzles. ¥signanent is to
complete each function skeleton using odisaightline code (i.e., no loops or conditionals) and a limited
number of C arithmetic and logical operators. Specifically, yowahgallowed to use the following eight
operators:

7 & 7| + << >>

A few of the functions further restrict this list. Also, you are not allowedde any constants longer than 8
bits. See the commentsiats.c for detailed rules and a discussion of the desired coding style.

Evaluation

Your code will be compiled witltccc and run and tested dMlkes. Your score will be computed out of a
maximum of 50 points based on the following distribution:

40 Correctness of code running ovlkes.
7.5 Performance of code, based on number of operators used in eatiofun

2.5 Style points, based on your instructor’s subjective evaluation of the qudlitgur solutions and your
comments.

The 15 puzzles you must solve have been given a difficulty rating betvaad 4, such that their weighted
sum totals to 40. We will evaluate your functions using the test argumebtestc . You will get full
credit for a puzzle if it passes all of the tests performedbtggst.c , half credit if it fails one test, and no
credit otherwise.

Regarding performanceyur main concern at this point in the course is that you can get the right
answer. However, we want to instill in you a sense of keeping things as shorssemngle as you can.
Furthermore, some of the puzzles can be solved by brute force, buaneyau to be more clever. Thus,
for each function we've established a maximum number of operators thadngoallowed to use for each
function. This limit is very generous and is designed only to catch egregitedijcient solutions. You
will receive .5 points for each function that satisfies the operator limit.

Finally, we've reserved 2.5 points for a subjective evaluation of the styWewr solutions and your com-
menting. Your solutions should be as clean and straightforward as pos3ile comments should be
informative, but they need not be extensive.

Name Description Rating | Max Ops
bitNor(x,y) “(xly) using only&and” 1 8
bitXor(x,y) " using only& and” 2 14
isNotEqual(x,y) X 1= y? 2 6
getByte(x,n) Extract byten from x 2 6
copyLSB(x) Set all bits to LSB ok 2 5
logicalShift(x,n) Logical right shiftx by n 3 16
bitCount(x) Count number of 1's ix 4 40
bang(x) Computelx without using! operator| 4 12
leastBitPos(x) Mark least significant 1 bit 4 30

Table 1: Bit-Level Manipulation Functions.

Part |: Bit manipulations

Table 1 describes a set of functions that manipulate and test sets of bis: Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max opddfgives the maximum number
of operators you are allowed to use to implement each function.

FunctionbitNor computes the WNR function. That is, when applied to argumemtsandy, it returns
“(xly) . You may only use the operatagsand™ . FunctionbitXor should duplicate the behavior of the
bit operation” , using only the operation&and™ .

FunctionisNotEqual comparex toy for inequality. As with allpredicate operations, it should returh
if the tested condition holds artiotherwise.

FunctiongetByte extracts a byte from a word. The bytes within a word are ordered froee8t(signif-
icant) to 3 (most significant). Functia@opyLSB replicates a copy of the least significant bit in all 32 bits
of the result. FunctiotogicalShift performs logical right shifts. You may assume the shift amaunt
satisfiesl < n < 31.

FunctionbitCount returns a count of the number of 1’s in the argument. Fundtéorg computes logical
negation without using thie operator. FunctiofeastBitPos generates a mask consisting of a single bit
marking the position of the least significant one bit in the argument. If thenragtiequals 0O, it returns O.

Part |I: Two's Complement Arithmetic

Table 2 describes a set of functions that make use of the two’s compleepeasentation of integers.
Functiontmax returns the largest integer.

FunctionisNonNegative determines whethex is less than or equal to 0.

FunctionisGreater determines whethex is greater thay .

Functiondivpwr2 divides its first argument by, wheren is the second argument. You may assume that
0 < n < 30. It must round toward zero.

Name Description Rating | Max Ops
tmax(void) largest two’s complement integer 1 4
isNonNegative(x) x >= 07? 3 6
isGreater(x,y) X > y? 3 24
divpwr2(x,n) x/(1<<n) 3 15
abs(x) absolute value 4 10
addOK(x,y) Doesx+y overflow? 3 20

Table 2: Arithmetic Functions

Functionabs is equivalent to the expressiar07?-x:x , giving the absolute value af for all values other
than T'Min.

FunctionaddOK determines whether its two arguments can be added together without overflow

Advice

You are welcome to do your code development using any system or compilesthypose. Just make sure
that the version you turn in compiles and runs correctiy\tkes . If it doesn’'t compile, we can'’t grade
it.

Thedlc program, a modified version of an ANSI C compiler, will be used to check poograms for
compliance with the coding style rules. The typical usage is

Jdlc bits.c

Type./dic -help for a list of command line options. The README file is also helpful. Some notes on
dic :

e Thedlc program runs silently unless it detects a problem.

e Don'tinclude<stdio.h> inyourbits.c file, as it confusedic and results in some non-intuitive
error messages.

Check the fileREADMEor documentation on running theest program. You'll find it helpful to work

through the functions one at a time, testing each one as you go. You c#reuseflag to instructbtest
to test only a single function, e.glbtest -f isPositive

Hand In Instructions

e Make sure you have included your identifying information in your Hiis.c

e Remove any extraneous print statements.

e Usecsl05submit to submitbits.c. (Alternatively, type make submit ”.

e If you discover a mistake, simply submit the file again.

