CS 105
The Buffer Bomb
See Calendar for Dates

October 4, 2006

I ntroduction

This assignment helps you develop a detailed understardditite calling stack organization on an IA32
processor. It involves applying a seriesboiffer overflow attacken an executable fileuf bonb in the lab
directory.

Note: In this lab, you will gain firsthand experience with one of thethods commonly used to exploit
security weaknesses in operating systems and networkrse®er purpose is to help you learn about the
runtime operation of programs and to understand the nafut@soform of security weakness so that you
can avoid it when you write system cod®&/e do not condone the use of these or any other form of
attack to gain unauthorized access to any system resources. There are criminal statutes governing such
activities.

L ogistics

Once again we recommend that you work in a group of two peo®lving the problems for this assign-
ment. The only “hand-in” will be an automated logging of ysuccessful attacks. Any clarifications and
revisions to the assignment will be posted on the course \&gb.p

Handout I nstructions

First, download the filbuf | ab- handout . t ar from the course web page. Copuyf | ab- handout . t ar
to a (protected) directory in which you plan to do your work.

Then give the command ‘ar xvf bufl ab- handout .t ar”. This will cause a number of files to be
unpacked in the directory:

MAKECOOKIE: Generates a “cookie” based on your team name.

BUFBOMB: The code you will attack.

SENDSTRING A utility to help convert between string formats.

All of these programs are compiled to run on Linux machines.

In the following instructions, we will assume that you hawpied the three programs to a protected local
directory, and that you are executing them in that localatiney.

Team Name and Cookie

You should create a team name for the one or two people in youipgof the following form:

e “ID.+ID5” where ID; is the username of the first team member dng is the username of the
second team member (for the team with a third member, pleaséejl us that member's name).

You should choose a consistent ordering of the IDs in thergefarm of team name. Teamsdoe+bsmi t h”
and ‘bsmi t h+j doe” are considered distinctYou must follow this scheme for generating your team
name. Our grading program will only give credit to those people whose usernames can be extracted
from the team names.

A cookieis a string of eight hexadecimal digits that is (with high fpability) unique to your team. You
can generate your cookie with tmmkecooki e program giving your team name as the argument. For
example:

uni x> ./ makecooki e j doe+bsnmith
0x69d04aal

In four of your five buffer attacks, your objective will be toake your cookie show up in places where it
ordinarily would not.

The BUFBOMB Program

TheBUFBOMB program reads a string from standard input with a funcgjeh buf having the following C
code:

1 int getbuf()

2 {

3 char buf[12];
4 Get s(buf);

5 return 1,

6}

The functionGet s is similar to the standard library functiaget s—it reads a string from standard input
(terminated by\ n’ or end-of-file) and stores it (along with a null terminatait)the specified destination.
In this code, the destination is an arfayf having sufficient space for 12 characters.

2

NeitherCGet s norget s has any way to determine whether there is enough space atsliration to store
the entire string. Instead, they simply copy the entirangirpossibly overrunning the bounds of the storage
allocated at the destination.

If the string typed by the user et buf is no more than 11 characters long, it is clear tnat buf will
return 1, as shown by the following execution example:

uni x> ./ buf bonb
Type string: howdy doody
Dud: getbuf returned Ox1

Typically an error occurs if we type a longer string:

uni x> ./ buf bonb
Type string: This string is too |ong
Quch!: You caused a segnentation fault!

As the error message indicates, overrunning the buffecéylyi causes the program state to be corrupted,
leading to a memory access error. Your task is to be morercletie the strings you feedurFBoMB so that
it does more interesting things. These are cadgploitstrings.

BurFBoMB takes several different command line arguments:

-t TEAM Operate the bomb for the indicated team. You should alwayggbe this argument for several
reasons:
e Itis required to log your successful attacks.

e BurBOMB determines the cookie you will be using based on your tearrenamst as does the
programmMAKECOOKIE.

e We have built features intBUFBOMB so that some of the key stack addresses you will need to
use depend on your team’s cookie.
- h: Print list of possible command line arguments

- n: Operate in “Nitro” mode, as is used in Level 4 below.

Your exploit strings will typically contain byte values thdo not correspond to the ASCII values for printing
characters. The prograsENDSTRING can help you generate thessew strings. It takes as input laex-
formattedstring. In this format, each byte value is represented byheodigits. For example, the string
“012345” could be entered in hex format a80 31 32 33 34 35." (Recall that the ASCII code for
decimal digitz is 0x3z.) Non-hex digit characters are ignored, including the kéan the example shown.

If you generate a hex-formatted exploit string in the &bepl oi t . t xt, you can apply the raw string to
BUFBOMB in several different ways:

1. You can set up a series of pipes to pass the string threBgDSTRING

uni x> cat exploit.txt | ./sendstring | ./bufbonb -t bovik

2. You can store the raw string in a file and use I/O redirediiosupply it toBUFBOMB:

uni x> ./sendstring < exploit.txt > exploit-raw txt
uni x> ./ bufbonmb -t bovik < exploit-raw txt

This approach can also be used when runmiungsoms from within GDB:

uni x> gdb buf bonb
(gdb) run -t bovik < exploit-rawtxt

One important point: your exploit string must not contairniebyalueOx0A at any intermediate position,
since this is the ASCII code for newline\ (v’). When Get s encounters this byte, it will assume you
intended to terminate the stringeSDSTRING will warn you if it encounters this byte value.

When you correctly solve one of the levetsjFsomB will automatically send an email notification to our
grading server. The server will test your exploit string taka sure it really works, and it will update the
lab web page indicating that your team (listed by cookie)dwamspleted this level.

Unlike the bomb lab, there is no penalty for making mistakethis lab. Feel free to fire away aUFBOMB
with any string you like.

Level 0: Candle (10 pts)

The functionget buf is called withinsuFBoMB by a functiont est having the following C code:

v
{

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 }

oid test()

int val;
volatile int local = Oxdeadbeef;
val = getbuf();
/* Check for corrupted stack */
if (local != Oxdeadbeef) {
printf("Sabotaged!: the stack has been corrupted\n”);

else if (val == cookie) {
printf("Boom : getbuf returned Ox%\n", val);
val i dat e(3);

}

el se {

printf("Dud: getbuf returned Ox%\n", val);
}

Whenget buf executes its return statement (line Sgeft buf), the program ordinarily resumes execution
within functiont est (at line 7 of this function). Within the filluf bonb, there is a functiorsnoke
having the following C code:

voi d snoke()

{
printf("Snmoke!: You called snmoke()\n");
val i dat e(0);
exit(0);

}

Your task is to geBUFBOMB to execute the code fanmoke whenget buf executes its return statement,
rather than returning tbest . You can do this by supplying an exploit string that overesithe stored
return pointer in the stack frame fget buf with the address of the first instruction smoke. Note that
your exploit string may also corrupt other parts of the stsigte, but this will not cause a problem, since
snoke causes the program to exit directly.

Some Advice:

e All the information you need to devise your exploit string this level can be determined by exam-
ining a diassembled version BUFBOMB.

e Be careful about byte ordering.

e You might want to useDB to step the program through the last few instructiongetf buf to make
sure it is doing the right thing.

e The placement obuf within the stack frame foget buf depends on which version afcc was
used to compilduf bonb. You will need to pad the beginning of your exploit string lvihe proper
number of bytes to overwrite the return pointer. The valuidbese bytes can be arbitrary.

Level 1. Sparkler (20 pts)

Within the filebuf bonb there is also a functiohi zz having the following C code:

void fizz(int val)

{
if (val == cookie) {
printf("Fizz!: You called fizz(0Ox%)\n", val);
val i date(1);
} else
printf("Msfire: You called fizz(0Ox%)\n", val);
exit(0);
}

Similar to Level 0, your task is to geUFBOMB to execute the code fdri zz rather than returning to
t est. In this case, however, you must make it appeafitaz as if you have passed your cookie as its
argument. You can do this by encoding your cookie in the gppriate place within your exploit string.

Some Advice:

e Note that the program won't really cdlli zz—it will simply execute its code. This has important
implications for where on the stack you want to place youko

Level 2. Firecracker (30 pts)

A much more sophisticated form of buffer attack involvesying a string that encodes actual machine
instructions. The exploit string then overwrites the retpointer with the starting address of these instruc-
tions. When the calling function (in this caget buf) executes its et instruction, the program will start
executing the instructions on the stack rather than retgriiVith this form of attack, you can get the pro-
gram to do almost anything. The code you place on the stacdlexictheexploitcode. This style of attack
is tricky, though, because you must get machine code ontstéu and set the return pointer to the start of
this code.

Within the filebuf bonb there is a functiolbang having the following C code:
i nt global _value = 0;

voi d bang(int val)

i f (global_value == cookie) {
printf("Bang!: You set gl obal _value to Ox%\n", gl obal_val ue);
val i date(2);
} el se
printf("Msfire: global _value = Ox%\n", gl obal val ue);
exit(0);

}

Similar to Levels 0 and 1, your task is to ggiFBOMB to execute the code fdrang rather than returning
tot est . Before this, however, you must set global variapleobal _val ue to your team’s cookie. Your
exploit code should sefl obal _val ue, push the address biang on the stack, and then execute &t
instruction to cause a jump to the code li@ang.

Some Advice:

e You can useGDB to get the information you need to construct your exploiingtr Set a break-
point within get buf and run to this breakpoint. Determine parameters such asdteess of
gl obal _val ue and the location of the buffer.

e Determining the byte encoding of instruction sequencesanhs tedious and prone to errors. You
can let tools do all of the work by writing an assembly codedataining the instructions and data
you want to put on the stack. Assemble this file witbc and disassemble it witbBsDUMP. You
should be able to get the exact byte sequence that you wél &yphe prompt. (A brief example of
how to do this is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your machyoer compiler, and even your team’s
cookie. Do all of your work on Wilkes, and make sure you inelutie proper team name on the
command line t®UFBOMB.

e Our solution requires 16 bytes of exploit code. Fortunatilgre is sufficient space on the stack, be-
cause we can overwrite the stored valu&@bp. This stack corruption will not cause any problems,
sincebang causes the program to exit directly.

e Watch your use of address modes when writing assembly codee tHatnmovl $0x4, %eax
moves thevalue0x00000004 into register¥eax; whereasrovl 0x4, %eax moves the value
at memory locatior0x00000004 into %eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

e Do not attempt to use eitherjarp or acal | instruction to jump to the code fdsang. These
instructions uses PC-relative addressing, which is veckytrto set up correctly. Instead, push an
address on the stack and usettleg instruction.

Level 3: Dynamite (40 pts)

Our preceding attacks have all caused the program to jumpet@ade for some other function, which
then causes the program to exit. As a result, it was acceptahlise exploit strings that corrupt the stack,
overwriting the saved value of regist#ebp and the return pointer.

The most sophisticated form of buffer overflow attack caubkesprogram to execute some exploit code
that patches up the stack and makes the program return teigieab calling function { est in this case).
The calling function is oblivious to the attack. This styfeattack is tricky, though, since you must: 1) get
machine code onto the stack, 2) set the return pointer totéinedf this code, and 3) undo the corruptions
made to the stack state.

Your job for this level is to supply an exploit string that xdhuseget buf to return your cookie back to

t est, rather than the value 1. You can see in the codd &8t that this will cause the program to go
“Boonl .” Your exploit code should set your cookie as the return @ahestore any corrupted state, push
the correct return location on the stack, and executetainstruction to really return tbest .

Some Advice:

e In order to overwrite the return pointer, you must also ovéeithe saved value @febp. However, it
is important that this value is correctly restored before geturn tot est . You can do this by either
1) making sure that your exploit string contains the corkedtie of the save@bp in the correct
position, so that it never gets corrupted, or 2) restore treect value as part of your exploit code.
You'll see that the code fdrest has some explicit tests to check for a corrupted stack.

e You can use&sDB to get the information you need to construct your exploingtr Set a breakpoint
within get buf and run to this breakpoint. Determine parameters such asatrexl return address
and the saved value &&bp.

e Again, let tools such asccandoBibumpdo all of the work of generating a byte encoding of the
instructions.

e Keep in mind that your exploit string depends on your machyoer compiler, and even your team’s
cookie. Do all of your work on Wilkes, and make sure you inelutie proper team name on the
command line t®8UFBOMB.

Once you complete this level, pause to reflect on what you hegemplished. You caused a program to
execute machine code of your own design. You have done saufficiently stealthy way that the program
did not realize that anything was amiss.

Level 4: Nitroglycerin (10 pts)

If you have completed the first four levels, you have earné@lddnts. You have mastered the principles
of the runtime stack operation, and you have gained firstieapdrience with buffer overflow attacks. We
consider this a satisfactory mastery of the material. Yewsaglcome to stop right now.

The next level is for those who want to push themselves begomdbaseline expectations for the course,
and who want to face a challenge in designing buffer overflibacks that arises in real life. This part of the
assignment only counts 10 points, even though it requireg arfmount of work to do, so don’t do it just for
the points.

From one run to another, especially by different users, Xaetestack positions used by a given procedure
will vary. One reason for this variation is that the valuesalbfenvironment variables are placed near the
base of the stack when a program starts executing. Envinohwaegiables are stored as strings, requiring
different amounts of storage depending on their values.s;Tthe stack space allocated for a given user
depends on the settings of his or her environment varialfi#ack positions also differ when running a

program undeGDB, sinceGDB uses stack space for some of its own state.

In the code that callget buf , we have incorporated features that stabilize the stadkatdhe position of
get buf 's stack frame will be consistent between runs. This madessible for you to write an exploit
string knowing the exact starting addressbaff and the exact saved value @bp. If you tried to use
such an exploit on a normal program, you would find that it veskme times, but it causes segmentation
faults at other times. Hence the name “dynamite’—an exydodeveloped by Alfred Nobel that contains
stabilizing elements to make it less prone to unexpectetbsixms.

For this level, we have gone the opposite direction, makliregstack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an explogivat is notoriously unstable.

When you rumBuFBOMB with the command line flag-“n,” it will run in “Nitro” mode. Rather than calling
the functionget buf , the program calls a slightly different functigret buf n:

i nt getbufn()

{
char buf[512];
Get s(buf);
return 1,

}

This function is similar taget buf , except that it has a buffer of 512 characters. You will ndwasl addi-
tional space to create a reliable exploit. The code thas gat buf n first allocates a random amount of
storage on the stack (using library functiahl oca) that ranges between 0 and 127 bytes. Thus, if you
were to sample the value &&bp during two successive executions @&t buf n, you would find they
differ by as much ag-127.

In addition, when run in Nitro modeBUFBOMB requires you to supply your string 5 times, and it will
executeget buf n 5 times, each with a different stack offset. Your exploitrgfrmust make it return your
cookie each of these times.

Your task is identical to the task for the Dynamite level. ®@again, your job for this level is to supply an
exploit string that will causget buf n to return your cookie back to test, rather than the value L ¢ém
see in the code for test that this will cause the program tokg&BOOM .” Your exploit code should set
your cookie as the return value, restore any corrupted, gtateh the correct return location on the stack,
and execute aet instruction to really return tbest n.

Some Advice:

e You can use the prograseNDSTRINGto send multiple copies of your exploit string. If you have a
single copy in the filexpl oi t . t xt , then you can use the following command:

uni x> cat exploit.txt | ./sendstring -n 5| ./bufbonb -n -t bovik

You MUST the same string for all 5 executionsg#t buf n. Otherwise it will fail the testing code
used by our grading server.

e The trick is to make use of theop instruction. It is encoded with a single byte (cdae90). You
can place a long sequence of these at the beginning of yoloiegpde so that your code will work
correctly if the initial jump lands anywhere within the seque.

e You will need to restore the saved value% #bp in a way that is insensitive to variations in stack
positions.

L ogistical Notes

Hand in occurs automatically whenever you correctly solleval. The program sends email to our grading
server containing your team name (be sure to setthé tommand line flag properly) and your exploit
string to the grading server. You will be informed of thisdkayrBoMB. Upon receiving the email, the server
will validate your string and update the lab web page. Yowshoheck this page a few minutes after your
submission to make sure your string has been validated o{lfrgally solved the level, your strirghould
be valid.]

Note that each level is graded individually. You do not needd them in the specified order, but you will
get credit only for the levels for which the server receivesléd message.

Have fun!

Generating Byte Codes

UsingGccas an assembler amibumMPas a disassembler makes it convenient to generate the tmgs co
for instruction sequences. For example, suppose we writke @Xianpl e. s containing the following
assembly code:

Exanpl e of hand-generated assenbly code

pushl $0x89abcdef # Push val ue onto stack

addl $17, %eax # Add 17 to %ax

.align 4 # Following will be aligned on nultiple of 4
.1 ong Oxf edcba98 # A 4-byte constant

.1 ong 0x00000000 # Paddi ng

The code can contain a mixture of instructions and data. Wngtto the right of a# character is a
comment. We have added an extra word of all Os to work arouhdrac®ming inoBJDuUMPto be described
shortly.

We can now assemble and disassemble this file:

uni x> gcc -c exanple.s
uni x> obj dunp -d exanple.o > exanple.d

The generated filexanpl e. d contains the following lines

0: 68 ef cd ab 89 push $0x89abcdef

5: 83 c0 11 add $0x11, Y%eax

8: 98 cwt | Obj dunp tries to interpret
9: ba dc fe 00 00 nov $0xf edc, %&€dx these as instructions

Each line shows a single instruction. The number on thenelitates the starting address (starting with 0),
while the hex digits after the ° character indicate the byte codes for the instruction. sTke can see that
the instructiorpushl $0x89ABCDEF has hex-formatted byte coé8 ef cd ab 89.

Starting at address 8, the disassembler gets confuseigsltdrinterpret the bytes in the fiégscanpl e. o as
instructions, but these bytes actually correspond to dddée, however, that if we read off the 4 bytes start-
ing at address 8 we ge®8 ba dc fe. This is a byte-reversed version of the data word~-EDCBA98.
This byte reversal represents the proper way to supply tkesk®s a string, since a little endian machine
lists the least significant byte first. Note also that it onngrated two of the four bytes at the end with
value00. Had we not added this paddingsibump gets even more confused and does not emit all of the
bytes we want.

Finally, we can read off the byte sequence for our code (omithe final 0's) as:

68 ef cd ab 89 83 cO 11 98 ba dc fe

10

