CS 105
Malloc Lab: Writing a Dynamic Storage Allocator
See Web page for due date

1 Introduction

In this lab you will be writing a dynamic storage allocator 0 programs, i.e., your own version of the
mal | oc, f ree andr eal | oc routines. You are encouraged to explore the design spaaévely and
implement an allocator that is correct, efficient and fast.

2 Logistics

As usual, you must work in pairs. Any clarifications and reans to the assignment will be e-mailed to the
class list or posted on the course Web page.

3 Handout Instructions

Start by downloadingral | ocl ab- handout . t ar from the Web page to a protected directory in which
you plan to do your work. Then give the commaridar xvf mal | ocl ab- handout.tar. This

will cause a number of files to be unpacked into the directdiye only file you will be modifying and
handing in istm ¢. Thendri ver . ¢ program is a driver program that allows you to evaluate thiéope
mance of your solution. Use the commamak e to generate the driver code and run it with the command
./'mdriver -V.(The-V flag displays helpful summary information.)

As with other labspm ¢ contains a C structure namé@am which you should fill in with information
about your programming tearDo this right away so you don’t forget.

When you have completed the lab, you will submit only one file(c), which contains your solution.

4 How to Work on the Lab

Your dynamic storage allocator will consist of the follogifour functions, which are declared inm h
and defined inmm c.

i nt mm.init(void);

void rmm mal | oc(size_t size);

void mmfree(void *ptr);

void rmmrealloc(void *ptr, size_ t size);

Themm c file we have given you implements the simplest but still fiorally correct malloc package that
we could think of. Using this as a starting place, modify th&sctions (and possibly define other private
st at i ¢ functions), so that they obey the following semantics:

e mMmi ni t: Before callingmmmal | oc nmr eal | oc or mf r ee, the application program (i.e.,
the trace-driven driver program that you will use to evauaiur implementation) callsmi ni t to
perform any necessary initialization, such as allocativgginitial heap area. The return value should
be 0 if all was OK, and -1 if there was a problem during iniiation.

e mMmnul | oc: Themmmnal | oc routine returns a pointer to an allocated block of at Isaste bytes.
The entire allocated block should lie within the heap regaod should not overlap with any other
allocated chunk. Note that the returned value should poitihé “payload”—the area available for
use by the caller—rather than to whatever header you migidasghto put on the block.

We will comparing your implementation to the versionn@fl | oc supplied in the standard C library
(I'i bc). Since thd i bc malloc always returns payload pointers that are aligned bgt8s, your
malloc implementation should do likewise.

e mmf ree: Thenmf r ee routine frees the block pointed to Ipt r . It returns nothing. This rou-
tine is only guaranteed to work when the passed poimier was returned by an earlier call to
nmmnal | oc or nmr eal | oc and has not yet been freed.

e mMmr eal | oc: Thenmmr eal | oc routine returns a pointer to an allocated region of at leagte
bytes with the following constraints.

— If pt r is NULL, the call is equivalent tomnal | oc(si ze) ;

— If si ze is equal to zero, the call is equivalenttnf r ee(ptr) ;

— If ptr is not NULL, it must have been returned by an earlier call thexgimmumal | oc or
nmr eal | oc. The call tommr eal | oc changes the size of the memory block pointed to by
pt r (the old blocK to si ze bytes and returns the address of the new block. Notice tleat th
address of the new block might be the same as the old blockpogit be different, depending
on your implementation, the amount of internal fragmeataitn the old block, and the size of
ther eal | oc request.

The contents of the new block are the same as those of the oldblock, up to the minimum of

the old and new sizes. Everything else is uninitialized. é@mple, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the neakldre identical to the first 8
bytes of the old block and the last 4 bytes are uninitialiZ&dhilarly, if the old block is 8 bytes

and the new block is 4 bytes, then the contents of the new laoekdentical to the first 4 bytes
of the old block.

These semantics match the the semantics of the corresgdnidbc mal | oc, r eal | oc, andf r ee rou-
tines. Typeman nal | oc to the shell for complete documentation.

2

5 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beastprimgram correctly and efficiently. They are
difficult to program correctly because they involve a lot ofyped pointer manipulation. You will find it
very helpful to write a heap checker that scans the heap agukslit for consistency.

Some examples of what a heap checker might check are:

e |Is every block in the free list marked as free?

Are there any contiguous free blocks that somehow escapddsming?

Is every free block actually in the free list?

Do the pointers in the free list point to valid free blocks?

Do any allocated blocks overlap?

¢ Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the functiomt nmmcheck(voi d) in nm c. It will check any invari-
ants or consistency conditions you consider prudent. lirmsta nonzero value if and only if your heap is
consistent. You are not limited to the listed suggestionsane you required to check all of them. You are
encouraged to print out error messages wimerc heck fails.

This consistency checker is for your own debugging duringeligment. When you subnmitm ¢, make
sure to remove any calls timcheck as they will slow down your throughput. Style points will been
for yourmmcheck function. Make sure to put in comments and document what y@alaecking.

6 Support Routines

The memlib.c package simulates the memory system for youardic memory allocator. You can invoke
the following functions imem i b. c:

e void *memsbrk(int incr): Expands the heap byncr bytes, where ncr is a positive
non-zero integer and returns a generic pointer to the fitst bf/the newly allocated heap area. The
semantics are identical to the Uribr k function, except thatremsbr k accepts only a positive
non-zero integer argument.

e voi d *memheap_| o(voi d) : Returns a generic pointer to the first byte in the heap.
e voi d *memheap_hi (voi d) : Returns a generic pointer to the last byte in the heap.
e sizet memheapsi ze(voi d) : Returns the current size of the heap in bytes.

e sizet mempagesi ze(voi d): Returns the system'’s page size in bytes (4K on Linux systems

7 The Trace-driven Driver Program

The driver progranmdr i ver . c inthenal | ocl ab- handout . t ar distribution tests younm c pack-
age for correctness, space utilization, and throughput driver program is controlled by a set thce
filesthat are included in theml | ocl ab- handout . t ar distribution. Each trace file contains a sequence
of allocate, reallocate, and free commands that instrécdttver to call youmrmmal | oc, nmr eal | oc,
andmmf r ee routines in some sequence. The driver and the trace filehaaine ones we will use when
we grade your submissiarm c file.

The drivermdr i ver . ¢ accepts the following command line arguments:

e -t <tracedir>: Look for the default trace files in directotyr acedi r instead of the default
directory compiled into the program.

e -f <tracefil e>: Use one particularr acef i | e for testing instead of the default set of trace
files.

e - h: Print a summary of the command line arguments.
e - | : Run and measudei bc malloc in addition to your own malloc package.
e -V: Verbose output. Print a performance breakdown for eade tiile in a compact table.

e - V: More verbose output. Prints additional diagnostic infation as each trace file is processed.
Useful during debugging for determining which trace fileasising your malloc package to fail.

8 Programming Rules

¢ You should not change any of the interfacesnn c.

e You should not invoke any memory-management-relatedrijfzalls or system calls. This excludes
the use ofral | oc, cal | oc,free,real | oc,sbrk, brk, map, or any variants of these calls in
your code.

e You are not allowed to define any globalstrat i ¢ compound data structures such as arrays, structs,
trees, or lists in younm c program. However, yoare allowed to declare global scalar variables such
as integers, floats, and pointersnim c. You are also allowed to declare structs, as long as no static
or global space is allocated for them.

e For consistency with thei bc mal | oc package, your allocator must always return pointers theat ar
aligned to 8-byte boundaries. The driver will enforce tléguirement for you.

9 Evaluation

You will receive zero pointsif you break any of the rules or your code is buggy and crashesltiver.
Otherwise, your grade will be calculated as follows:

4

e Correctness (20 points).You will receive full points if your solution passes the ammess tests
performed by the driver program. You will receive partiatdit for each correct trace.

e Performance (35 points)iwo performance metrics will be used to evaluate your soiuti

— Space utilization The peak ratio between the aggregate amount of memory ystt wriver
(i.e., allocated vianrm.mal | oc or mm.r eal | oc but not yet freed viarmf r ee) and the size
of the heap used by your allocator. The optimal ratio equels trou should find good policies
to minimize fragmentation in order to make this ratio as elas possible to the optimal.

— Throughput The average number of operations completed per second.

The driver program summarizes the performance of yourattody computing @erformance index
P, which is a weighted sum of the space utilization and thrpugh

T
Psz—l—(l—w)min(l,)
Tyive

wherew = 0.6, U is your space utilizatiori]" is your throughput, and;;.. is the estimated throughput
of I i bc malloc on your system on the default traéeShe purpose of thenin is to keep you from
going overboard in trying to outperform thé bc allocator. Note that the performance index favors
space utilization over throughput, sinee> 0.5.

Since both memory and CPU cycles are expensive system cespuve adopted this formula to en-
courage balanced optimization. Ideally, the performandex would reach 1.0 or 100%, though that
figure is unachievable in practice. Since each metric willtdbute at mostv and1 — w, respectively,

to the performance index, you should not go to extremes tinige either memory utilization or
throughput at the expense of the other. To receive a gooé,spoun must achieve a balance.

e Style (10 points).
— Your code should be properly decomposed into functions aada few static or global variables

as possible. (You will probably need at least one static &pkeack of details about the heap.)

— Your code should begin with a header comment that descrhmesttucture of your free and
allocated blocks, the organization of the free list, and lyowr allocator manipulates the free
list. Each function should be preceded by a header commantiscribes what the function
does.

— Each function should have a header comment that describassitvetoes and how it does it.
— Your heap consistency checkamcheck should be thorough and well-documented.

You will be awarded 5 points for a good heap consistency dreakd 5 points for good program
structure and comments.

The value forT};. is a constant in the driver that was established when the éabsat up.

10 Submission Instructions

Submit onlymm ¢, usingcs105subni t . For convenience, typingtake submi t " will submit for you.

You may submit your solution for testing as many times as y@hwp until the due date. When you are
satisfied with your solution, submit it again. Only the lastsion you submit will be graded.

Note that the final grading will be done on Wilkes. While it issgible to run your allocator on other
machines (including your own), the score generatedthyi ver may be different because of speed differ-
ences. Therefore, be sure to test your allocator on Wilkdgetsure you will get the grade you think you
deserve.

11 Hints

e Use themdri ver -f option. During initial development, using tiny trace files will sitifp debug-
ging and testing. We have included two such trace fdésof t 1, 2- bal . r ep) that you can use for
initial debugging.

e Use therdri ver -v and- V options. The - v option will give you a detailed summary for each
trace file. If you give- V instead, the driver will also indicate when each trace file&d, which will
help you isolate errors.

e Compile withgcc - g and use a debuggerA debugger will help you isolate and identify out of
bounds memory references.

e Understand every line of the malloc implementation in theébi@ok. The textbook has a detailed
example of a simple allocator based on an implicit free ligse this is a point of departure. Don't
start working on your allocator until you understand eveing about the simple implicit-list allocator.

e Encapsulate your pointer arithmetic in C preprocessor macPointer arithmetic in memory man-
agers is confusing and error-prone because of all the tgptrg that is necessary. You can reduce
the complexity significantly by writing macros for your ptén operations. See the text for examples.

e Do your implementation in staged.he first 9 traces contain requestsnal | oc andfree. The
last 2 traces contain requests fagal | oc, mal | oc, andf r ee. We recommend that you start by
getting younmal | oc andf r ee routines working correctly and efficiently on the first 9 gac Only
then should you turn your attention to theal | oc implementation. For starters, buiiceal | oc
on top of your existingral | oc andf r ee implementations. But to get really good performance,
you will need to build a stand-alorresal | oc.

e Use a profiler.You may find thegpr of tool helpful for optimizing performance.

e Start early!lt is possible to write an efficient malloc package with a feages of code. However, we
can guarantee that it will be some of the most difficult anchigijrated code you have written so far
in your career. So start early, and good luck!

