CS 105
Lab 5: Code Optimization
See Calendar for Dates

1 Introduction

This assignment deals with optimizing memory intensiveecdthage processing offers many examples of
functions that can benefit from optimization. In this lab, wi# consider two image processing operations:
r ot at e, which rotates an image counter-clockwisedy, andsnoot h, which “smooths” or “blurs” an
image.

For this lab, we will consider an image to be represented agoadimensional matrix\/, where M; ;
denotes the value df, j)th pixel of M. Pixel values are triples of red, green, and blue (RGB) \salige

will only consider square images. L&t denote the number of rows (or columns) of an image. Rows and
columns are numbered, in C-style, frénto N — 1.

Given this representation, thieot at e operation can be implemented quite simply as the combimatfo
the following two matrix operations:

e TransposeFor each(i, j) pair, M; ; and M ; are interchanged.

e Exchange rowsRow is exchanged with rolN — 1 — i.

This combination is illustrated in Figure 1.

The snoot h operation is implemented by replacing every pixel valuehwiite average of all the pixels
around it (in a maximum o3 x 3 window centered at that pixel). Consider Figure 2. The \&ifepixels
M2[ 1] [ 1] andM2[ N- 1] [ N- 1] are given below:

i Z?:o M1[i][]]
9
YN §V:_]\}72 M1[i][5]
4

M2[1])[1] =

M2[N — 1][N — 1] =



R B —

0.0

Rotate by 90

(counter—clockwise)

(0,0)

(0,0 -

Exchange
Transpose Rows

Figure 1: Rotation of an image 9)° counterclockwise

M1[1][1] M2[1][1]

-
P

smooth
—_—

4 VA

M1IN-11IN-11 M2IN-11IN-11

Figure 2: Smoothing an image



2 Logistics

You are to work in a group of two people in solving the probleorsthis assignment. The only “hand-in”
will be electronic. Any clarifications and revisions to tresgnment will be posted on the lab Web page or
course email.

3 Handout I nstructions

The materials for this lab are on the course web page.

Start by copyingoer f | ab- handout . t ar to a protected directory in which you plan to do your work.
Then give the command:ar xvf perfl ab-handout. tar. This will cause a number of files to be
unpacked into the directory. The only file you will be modifgi and handing in i&er nel s. c. The
dri ver. c program is a driver program that allows you to evaluate théopmance of your solutions.
Use the commandake dri ver to generate the driver code and run it with the commahdri ver .
Note that you ar@ot allowed to change the Makefile, which also means you are tetvedl to fiddle with
compiler switches.

Looking at the fileker nel s. ¢ you'll notice a C structuret eam into which you should insert the re-
quested identifying information about the two individualsmprising your programming teanDo this
right away so you don't forget.

4 Implementation Overview

Data Structures

The core data structure deals with image representatigui. @&l is a struct as shown below:

typedef struct {
unsi gned short red; /+* R value */
unsi gned short green; /* G value */
unsi gned short blue; /* B value */

} pixel;
As can be seen, RGB values have 16-bit representationshitl&lor”). An imagel is represented as a one-
dimensional array ofi xel s, where thé, j)th pixel isl [ RI DX(i , j, n)] . Heren is the dimension of the image

matrix, andRl DX is a macro defined as follows:
#define RIDX(i,j,n) ((i)*(n)+(j))

See the filedef s. h for this code.

Rotate

The following C function computes the result of rotating Soeirce imager ¢ by 90° and stores the result in desti-
nation imagelst . di mis the dimension of the image.



void naive_rotate(int dim pixel xsrc, pixel =dst)

{

int i, j;

for(i=0; i < dim i++)
for(j=0; j < dinm j++)
dst[RIDX(di m1-j,i,dim] = src[RIDX(i,j,dim];

return;

}

The above code scans the rows of the source image matrixingpfythe columns of the destination image matrix.
Your task is to rewrite this code to make it run as fast as ptessising techniques like code motion, loop unrolling
and blocking.

See the filker nel s. c for this code.

Smooth

The smoothing function takes as input a source imsge and returns the smoothed result in the destination image
dst . Here is part of an implementation:

voi d naive_snooth(int dim pixel *src, pixel =dst)

{

int i, j;

for(i=0; i <dim i++)
for(j=0; j < dim j++)
dst[RIDX(i,j,dim] = avg(dim i, j, src); /* Snooth the (i,j)th pixel =*/

return;

}

The functionavg returns the average of all the pixels around ¢le j ) th pixel. Your task is to optimizenoot h
(andavg) to run as fast as possibléNdte: The functionavg is a local function and you can get rid of it altogether to
implementsnoot h in some other way.)

This code (and an implementationa¥g) is in the fileker nel s. c.

Perfor mance measures

Our main performance measureG®E or Cycles per Elementlf a function takes”' cycles to run for an image of
size N x N, the CPE value i€'/N?2. Table 1 summarizes the performance of the naive implertiensashown
above and compares it against an optimized implementaferformance is shown for 5 different valuesiéf All
measurements were made on Wilkes, which is a Pentium 11l Xeachine.

The ratios (speedups) of the optimized implementation thesnaive one will constitute scoreof your implementa-
tion. To summarize the overall effect over different valoésv, we will compute thegeometric meawof the results
for these 5 values. That s, if the measured speedup¥ fer {32, 64, 128,256, 512} are Rs2, Rea, Ri2s, Ross, and



\ Testcasd 1 2 3 4 5] \
Method N| 64 128 256 512 1024 Geom. Mean
Naiver ot at e (CPE) 221 216 27.6 79.8 220p
Optimizedr ot at e (CPE) 80 86 148 221 253
Speedup (naive/opt) 28 25 19 36 8.7 3.1
Method N| 32 64 128 256 512 Geom. Mean
Naivesnoot h (CPE) 524 525 527 522 523
Optimizedsnoot h (CPE) 415 416 412 535 56.4
Speedup (naive/opt) / 126 126 128 9.8 9.8 11.3

Table 1: Sample CPEs and Ratios for Optimized vs. Naive Imetdations

Rs51- then we compute the overall performance as

R = {)/R32 X Req X Ri2g X Rase X Rs12

Assumptions

To make life easier, you can assume thais a multiple of 32. Your code must run correctly for all sucues ofV,
but we will measure its performance only for the 5 values showTable 1 (note that the CPEs and speedups in this
table will not match those you'll actually see).

5 Infrastructure

We have provided support code to help you test the corresimiegour implementations and measure their perfor-
mance. This section describes how to use this infrastrectlihe exact details of each part of the assignment is
described in the following section.

Note: The only source file you will be modifying iser nel s. c.

Versioning

You will be writing many versions of theot at e andsnoot h routines. To help you compare the performance of
all the different versions you've written, we provide a wdymgistering” functions.

For example, the fil&er nel s. c that we have provided you contains the following function:

void register_rotate functions()

{
}

add rotate function(& otate, rotate_descr);

This function contains one or more callsadd_r ot at e_f unct i on. In the above example,
add_r ot at e_f unct i on registers the functionot at e along with a string ot at e_descr which is an ASCII



description of what the function does. See the Kitr nel s. ¢ to see how to create the string descriptions. This
string can be at most 256 characters long.

A similar function for your smooth kernels is provided in file ker nel s. c.

Driver

The source code you will write will be linked with object cotiet we supply into @r i ver binary. To create this
binary, you will need to execute the command

uni x> nmake driver

You will need to re-make driver each time you change the codeer nel s. c. To test your implementations, you
can then run the command:

uni x> ./driver

Thedri ver can be run in four different modes:

e Default modein which all versions of your implementation are run.

e Autograder modgin which only ther ot at e() andsnoot h() functions are run. This is the mode we will
run in when we use the driver to grade your handin.

e File mode in which only versions that are mentioned in an input fileraire

e Dump modein which a one-line description of each version is dumpealtiext file. You can then edit this text
file to keep only those versions that you'd like to test ushwfile mode You can specify whether to quit after
dumping the file or if your implementations are to be run.

If run without any argumentsir i ver will run all of your versions default mode Other modes and options can be
specified by command-line argumentgitoi ver , as listed below:

- g : Runonlyrotate() andsnoot h() functions @gutograder modg

-f <funcfil e>: Execute only those versions specifieckinuncf i | e> (file mode.

-d <dunpfil e>: Dump the names of all versions to a dump file cakatlnpf i | e>, one lineto a version
(dump modg

-q : Quit after dumping version names to a dump file. To be usedmadaém with- d. For example, to quit
immediately after printing the dump file, typé dri ver -qd dunpfile.

- h : Print the command line usage.

Team I nformation

Important: Before you start, you should fill in the structker nel s. ¢ with information about your team (group
name, team member names and email addresses). This infamrisgust like the one for the Data Lab.



6 Assignment Details

Optimizing Rotate (50 points)

In this part, you will optimizer ot at e to achieve as low a CPE as possible. You should congsilever and then
run it with the appropriate arguments to test your impleragons.

For example, running driver with the supplied naive vergfonr ot at e) generates the output like that shown below:

uni x> ./driver

Teamane: bovi k

Menmber 1: Harry Q Bovik
Emai|l 1: bovi k@owhere. edu

Rotate: Version = naive_rotate: Naive baseline inplenentation:

Dim 64 128 256 512 1024 Mean
Your CPEs 14. 6 40.9 46. 8 63.5 90. 9

Basel i ne CPEs 14.7 40.1 46. 4 65. 9 94.5

Speedup 1.0 1.0 1.0 1.0 1.0 1.0

Optimizing Smooth (50 points)

In this part, you will optimizesnoot h to achieve as low a CPE as possible.
For example, running driver with the supplied naive vergfonsnoot h) generates the output like that shown below:

uni x> ./driver

Smoot h: Version = nai ve_snoot h: Nai ve baseline inplenentation:

D m 32 64 128 256 512 Mean
Your CPEs 695.8 698.5 703.8 720.3 722.7
Baseline CPEs 695.0 698.0 702.0 717.0 722.0
Speedup 1.0 1.0 1.0 1.0 1.0 1.0
Grading

There are two things to consider in grading. First, Bass| i ne CPEs are calculated by running the rotate and
smooth code with no performance modificatioBpeedup is the critical factor for the grading program. The grading
formula is linear in the speedup, with a diminishing rateeitirn once you have gotten past a certain threshold, and a
maximum beyond which you only get bragging rights. The rales

Rotate Grading
Speedup Range Points
1.0 < Rotate Speedug 2.1 40 x (Speedup- 1.0)/(2.1 — 1.0)
2.1 < Rotate Speedug 3.0 | 40 + 10 x (Speedup- 2.1)/(3.0 — 2.1)
3.0 < Rotate Speedup 50




Smooth Grading
Speedup Range Points
1.0 < Smooth Speedug 5.0 40 x (Speedup- 1.0)/(5.0 — 1.0)
5.0 < Smooth Speedug 10.0 | 40 + 10 x (Speedup- 5.0)/(10.0 — 5.0)
10.0 < Smooth Speedup 50

Some Advice

Look at the assembly code generated foriti¢ at e andsnoot h. Focus on optimizing the inner loop (the code
that gets repeatedly executed in a loop) using the optimizaticks covered in class. Thepot h is more compute-
intensive and less memory-sensitive thanrtbé at e function, so the optimizations are of somewhat differentita.

Coding Rules

You may write any code you want, as long as it satisfies theviafig:

e It must be in ANSI C. You may not use any embedded assemblybgmstatements.

e |t must not interfere with the time measurement mechanism. Will also be penalized if your code prints any
extraneous information.

You can only modify code ikker nel s. c. You are allowed to define macros, additional global vagaband other
procedures in these file¥ou may not modify the Makefile

Evaluation

Your solutions forr ot at e andsnoot h will each count for 50% of your grade. The score for each wélbased on
the following:

e Correctness: You will get NO CREDIT for buggy code that caube driver to complain! This includes code
that correctly operates on the test sizes, but incorrectiymage matrices of other sizes. As mentioned earlier,
you may assume that the image dimension is a multiple of 32.

e CPE: You will get full credit for your implementations obt at e andsnoot h if they are correct and achieve
mean CPEs above threshoRki8 and10.0 respectively. You will get partial credit for a correct inephentation
that does better than the supplied naive one.

7 Handin Instructions

Usecs105submi t on Turing or Knuth to hand your code in.

8 Noteson GCC’s Optimization Techniques

The Gnu C Compiler has some “helpful” optimization behasithiat can make things confusing for you. Our strongest
advice for dealing with these problems is to look at the atdgmode before you assume what’s going on in the
machine. You can generate relatively readable assemhlgrimel s. s by running‘gcc -2 -S kernel s. c”.



For early optimization, it can be good to concentrate on timeii loop in the generated code; this can be found by
looking for backwards jumps.

8.1 CodeMotion

Note that under some circumstances, the compiler will in fiaave function calls out of loops. In particular, it may
do this for ‘max” and “m n” calls.

8.1.1 Inlining

The most surprising thing the compiler may do for you is @hiféining. Inlining is (basically) substituting the soerc
code of one function into another function that calls it. Egample:

static int nean(int a, int b)

{

return (a + b) / 2;
}
static int loopy(int x[210][10], int y[10][210])
{

int i, j;

for (i =0; i <10; i++)

for (j =0; | <10; j++)

} x[1]1[j] = mean(x[i][j], y[il[j]);

Under high optimization levels (including®2), the compiler may decide to replace theean call with its actual
code, so thatl*oopy” would read (in effect):

static int loopy(int x[10][10], int y[10][210])
{
for (i =0; i < 10; i++)
for (j =0; j <10; |j++)
} x(i]0j] = (x0il0il + ylillil) /1 2

The exact conditions for inlining are complex, but seemjrgrhall changes to your code can cause the compiler to
change its mind in either direction. For example,nifean” is called from only one place, it is more likely to be
inlined; adding another call in a different function can sathe inlining to go away.

Also, inlining can sometimes hurt performance. This hagpaast commonly when the compiler runs out of registers.
The current compiler behaves very badly when it is out ofstegs; sometimes it even generates code like this:

movl %ax, -88(%ebp)
movl - 88(%bp), %eax

and then never uses the value i88( ¥ebp) again!

To control inlining, you can play around with the compileriew of the world. If you add thei“nl i ne” keyword to
a function declaration, you are telling the compiler younkhit should be inlined:

9



static inline int mean(int a, int b)

{
}

This only works if ‘mean” is definedbeforeit is used.

Contrariwise, there are several ways to (trygegventinlining. In order of probable effectiveness (we havenpex
imented with all of these), they are:

Compile with- f no- i nl i ne (this prevents inlining o&ll functions). (This works in general, but won’t work
for this lab because we use owhkef i | e for grading.)

Declare the function using the very ugly gcc attribute eiem:

static int nean(int a, int b)
__attribute__ ((noinline))

{
}

(Note that the doubled parentheses are necessary.)

Call the function from two or more different places. (Noteome of the places is a dummy function that isn’'t
actually used, the dummy must be global or the compiler vpitinize it out of existence.)

Declare the function as a global rather than a static:

int mean(int a, int b)

{
}

Declare the function with a prototype before it is used, kafirek it only after all uses:

static int nean(int a, int b);

static int |oopy(...)
{

}

static int nmean(int a, int b)

{
}
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