
CS 105, Spring 2008

Ring Buffer

April 14, 2008

1 Introduction

A ring buffer, also called a circular buffer, is a common method of sharing
information between a producer and a consumer. In class, we have seen an
elegant implementation of a ring buffer using semaphores.

In this lab, you will implement a simple producer/consumer program without
using semaphores. In so doing, you will learn some of the basics of synchroniza-
tion and threads.

As usual, you are to work in groups of two. It is an Honor Code violation
to work on the program without your partner present.

2 Specifications

You are to write a program named ringbuf.c from scratch. Be sure to doc-
ument the names of both team members in comments at the top of
the file.

Your program must be implemented using POSIX threads. There will be
two threads: a producer and a consumer. The producer will read information
from standard input (see below) and place it into the ring buffer. The consumer
will extract information from the buffer and perform certain operations.

You may NOT use semaphores of any type to implement your solution.
This includes implementing a semaphore construct yourself by building on more
primitive thread constructs. You also may not implement a solution that uses
any type of polling, regardless of whether or not the polling wastes the CPU. (In
other words, your implementation cannot repeatedly check whether the buffer
is full or empty, then “wait a while” before checking again. If your producer is
capable of seeing two buffer-full conditions in a row without inserting anything
in the buffer, or if your consumer can see two buffer-empty conditions without
removing anything, you have implemented polling and must come up with a
different solution.)

The main program must create a thread to run the consumer, and then call
the producer directly. After the consumer terminates, the main thread should

1



collect it with pthread_join and then exit. (Alternatively, the main program
could create and collect two new threads. However, the consumer thread must
be created first or your output might not match our test cases.)

All library and system calls should be error-checked. If an error occurs, print
an informative message and terminate the program.

2.1 The Shared Buffer

The producer and consumer will communicate through a shared buffer that has
10 slots (the size should be set by a #define so that it’s easy to change). Each
slot in the buffer has the following structure:

struct message
{
int value; /* Value to be passed to consumer */
int consumer_sleep; /* Time (in ms) for consumer to sleep */
int line; /* Line number in input file */
int print_code; /* Output code; see below */
int quit; /* NZ if consumer should exit */
};

These fields have the following purposes:

value The actual data to be passed to the consumer; in this example the con-
sumer will sum the values passed in.

consumer sleep A time (expressed in milliseconds) that the consumer will ex-
pend in consuming the buffer entry.

line The line number in the input file that this data came from. Line numbers
start at 1.

print code A code indicating whether the consumer should print a status re-
port after consuming this line.

quit For all buffer entries except the last, this value should be zero. For the
last entry, it should be nonzero. The consumer should not look at any of
the other fields in the message if quit is nonzero.

Besides the shared buffer itself, you will need a number of auxiliary variables
to keep track of the buffer status. These might include things such as the index
of the next slot to be filled or emptied. You will also need some pthreads
“conditions” and “mutexes.” The exact set is up to you.

2.2 The Producer

The basic task of the producer is to read one line at a time from the standard
input. For each line, it will sleep for a time given in the line, and then pass the

2



data to the consumer via the ring buffer. Finally, after the message has been
placed in the ring buffer, the producer will optionally print a status message.
Since printing is slow, the producer must not hold any mutexes while it is
printing.

Each input line consists of four numbers, as follows:

• The value to be passed to the consumer.

• An amount of time the producer should sleep, given in milliseconds. Note
that the sleep must be done before placing information in the ring buffer.

• An amount of time the consumer should sleep, given in milliseconds.

• A “print code” indicating what sorts of status lines should be printed.

You can read these four numbers using the C library function “scanf” (see “man
scanf” for more information.

When scanf returns an EOF indication, your program should enter one
more message in the ring buffer, without sleeping first. This message should
contain a nonzero quit field; the other fields will be ignored.

The print codes are interpreted as follows:

0 No messages are printed for this input line.

1 The producer generates a status message.

2 The consumer generates a status message.

3 Both the producer and consumer generate status messages.

The producer’s status message should be generated after the data has been
passed to the consumer. It must be produced by calling printf with the fol-
lowing format argument:

"Produced %d from input line %d\n"

2.3 The Consumer

The consumer waits for messages to appear in the buffer, extracts them, and
then executes them. Note that the consumer does not act on the message until
after it has been removed from the buffer, so that the producer can continue to
work while the consumer is processing the message.

If the extracted message has a nonzero quit field, the consumer prints the
total it has calculated, using the following printf format:

"Final sum is %d\n"

It then terminates its thread.
Otherwise, the consumer sleeps for the specified time, adds the value field

to a running total (initialized to zero), and optionally prints a status message
if the print_code is 2 or 3. The status message must be generated by calling
printf with the following format argument:

"Consumed %d from input line %d; sum = %d\n"

3



3 Useful Information

You will need to make use of a number of Unix system and C library calls. You
can read the documentation on these calls by using “man”. For example, to
learn about pthread_mutex_lock, type “man 3 pthread mutex lock”. (The
“3” specifies that the manual page should come from section 3 of the manual,
which describes the C library. You can usually omit it, but sometimes “man”
will give you the wrong manual page and you have to be explicit. The calls you
will need to use are all documented in sections 2 and 3 of the manual.)

You should try to develop a familiarity with the style of Unix manual pages.
For example, many man pages have a “SEE ALSO” section at the bottom,
which will lead you to useful related information.

3.1 Downloading

As usual, the lab is available by downloading a tar file. Unpacking the file with
“tar xvf ringbuf.tar” will create a subdirectory named ringbuf containing
the writeup and test files.

3.2 Pthreads Features

You will need to familiarize yourself with the following pthreads functions, at a
minimum:

• pthread_create

• pthread_join

• pthread_mutex_lock

• pthread_mutex_unlock

• pthread_cond_wait

• pthread_cond_signal

You may choose to use other functions as well. Remember that you are
NOT allowed to use the pthreads semaphore functions (sem_*).

3.3 Sleeping

For historical reasons, there are many ways to get a thread to go to sleep
for a specified time period. The preferred method is nanosleep; see “man 2
nanosleep” for documentation. Note that you cannot simply convert millisec-
onds to nanoseconds, because nanosleep requires that the nanoseconds field be
less than 109. You may find it useful to write a wrapper function that accepts
sleep times in milliseconds.

If the specified sleep time is zero, your program should not call nanosleep.

4



3.4 Compiling and Testing

To compile your program, you will need to #include several header files. To
use threads, you need <pthread.h>. Any C program that uses printf or scanf
needs <stdio.h>. Finally, as the nanosleep manual page informs you, you will
need <time.h>.

To link your program, you will need to specify -lpthread on the command
line. For example, you could put the following in your Makefile:

$(CC) $(CFLAGS) -o ringbuf ringbuf.c -lpthread

To test your program, run it with standard input redirected to a test file.
For example:

% ./ringbuf < testinput1.txt

The lab kit includes five test files for you to try out:

testinput0.txt A small test case with no sleeping. Note that because of
indeterminacies in the system scheduler, this test file may produce different
results from run to run. However, only it and testinput4.txt will ensure
that you are interpreting print_code correctly.

testinput1.txt The test case from testinput0.txt, with 1-second sleeps for
the producer and no sleeping in the consumer. We recommend that you
begin testing with this file, because it generates results that are easy to
interpret.

testinput2.txt The test case from testinput0.txt, with 1-second sleeps for
the consumer and no sleeping in the producer. This file tests your ability
to deal with situations where the producer runs far ahead of the consumer,
so that the buffer is always full.

testinput3.txt A test case with randomly generated sleep times. At times,
the producer will run ahead; at other times the consumer will catch up.

testinput4.txt Another test case with randomly generated sleep times, and
also with randomly generated print_codes.

4 Submitting

Use cs105submit to submit your program, which should consist of the single
file ringbuf.c. Be sure the names of both team members are CLEARLY and
PROMINENTLY documented in the comments at the top of the file.

5 Sample Output

The following is the result of running our sample solution on the test case
testinput4.txt:

5



Produced -8 from input line 2
Consumed 3 from input line 1; sum = 3
Produced 1 from input line 3
Produced 10 from input line 4
Consumed 1 from input line 3; sum = -4
Consumed 4 from input line 5; sum = 10
Produced 0 from input line 6
Consumed 0 from input line 6; sum = 10
Produced -1 from input line 8
Consumed -1 from input line 8; sum = 3
Consumed 8 from input line 9; sum = 11
Consumed 5 from input line 12; sum = 20
Produced 10 from input line 14
Consumed 1 from input line 15; sum = 40
Produced 10 from input line 16
Produced 5 from input line 17
Produced -2 from input line 20
Produced 1 from input line 21
Consumed -2 from input line 20; sum = 48
Consumed 9 from input line 23; sum = 53
Consumed 3 from input line 24; sum = 56
Produced 6 from input line 26
Consumed 6 from input line 26; sum = 55
Produced -3 from input line 27
Produced -8 from input line 32
Consumed -4 from input line 30; sum = 47
Consumed -7 from input line 31; sum = 40
Consumed -8 from input line 32; sum = 32
Consumed -4 from input line 34; sum = 34
Produced -7 from input line 36
Produced -1 from input line 39
Consumed 3 from input line 40; sum = 45
Consumed 1 from input line 41; sum = 46
Produced 10 from input line 42
Produced 0 from input line 43
Consumed -2 from input line 44; sum = 54
Produced -8 from input line 46
Consumed -8 from input line 46; sum = 39
Produced 1 from input line 49
Consumed -8 from input line 47; sum = 31
Consumed -1 from input line 48; sum = 30
Consumed 1 from input line 49; sum = 31
Consumed 11 from input line 50; sum = 42
Final sum is 42

6


