
CS 105

Lab 1: Manipulating Bits

See class calendar for lab and due dates

Introduction

The purpose of this assignment is to become more familiar with bit-level representations and manipulations.

You’ll do this by solving a series of programming “puzzles.” Many of these puzzles are quite artificial, but

you’ll find yourself thinking much more about bits in working your way through them.

Logistics

You MUST work in a group of at least two people in solving the problems for this assignment. The only

“hand-in” will be electronic. Any clarifications and revisions to the assignment will be posted on the course

Web page. We strongly recommend that you and your partner brainstorm before coding.

Handout Instructions

The materials for the data lab are on the Web at:

http://www.cs.hmc.edu/˜geoff/cs105/labs/lab01-data/datalab-handout.tar

Start by downloading datalab-handout.tar to a (protected) directory in which you plan to do your

work. Then give the command: tar xvf datalab-handout.tar. This will cause a number of files

to be unpacked in the directory. The only file you will be modifying and turning in is bits.c.

The file btest.c allows you to evaluate the functional correctness of your code. The file README contains

additional documentation about btest. Use the command: make btest to generate the test code and

run it with the command: ./btest. The file dlc is a compiled binary that you can use to check your

solutions for compliance with the coding rules. (NOTE: dlc is used by the auto grader, so be sure to check

your solution file prior to submission). The remaining files are used to build btest.

Looking at the file bits.c you’ll notice a C structure team into which you should insert the requested

identifying information about the individuals comprising your programming team. Do this right away so

you don’t forget.

The bits.c file also contains a skeleton for each of the 15 programming puzzles. Your assignment is to

complete each function skeleton using only straightline code (i.e., no loops or conditionals) and a limited

1



number of C arithmetic and logical operators. Specifically, you are only allowed to use the following eight

operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8

bits. See the comments in bits.c for detailed rules and a discussion of the desired coding style.

Evaluation

Your code will be compiled with GCC and run and tested on Wilkes. Your score will be computed out of a

maximum of 50 points based on the following distribution:

40 Correctness of code running on Wilkes.

7.5 Performance of code, based on number of operators used in each function.

2.5 Style points, based on your instructor’s subjective evaluation of the quality of your solutions and your

comments.

The 15 puzzles you must solve have been given a difficulty rating between 1 and 4, such that their weighted

sum totals to 40. We will evaluate your functions using the test arguments in btest.c. You will get full

credit for a puzzle if it passes all of the tests performed by btest.c, half credit if it fails one test, and no

credit otherwise.

Regarding performance, our main concern at this point in the course is that you can get the right

answer. However, we want to instill in you a sense of keeping things as short and simple as you can.

Furthermore, some of the puzzles can be solved by brute force, but we want you to be more clever. Thus,

for each function we’ve established a maximum number of operators that you are allowed to use for each

function. This limit is very generous and is designed only to catch egregiously inefficient solutions. You

will receive .5 points for each function that satisfies the operator limit.

Finally, we’ve reserved 2.5 points for a subjective evaluation of the style of your solutions and your com-

menting. Your solutions should be as clean and straightforward as possible. Your comments should be

informative, but they need not be extensive.

Part I: Bit manipulations

Table 1 describes a set of functions that manipulate and test sets of bits. The “Rating” field gives the

difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number

of operators you are allowed to use to implement each function.

Function bitNor computes the NOR function. That is, when applied to arguments x and y, it returns

˜(x|y). You may only use the operators & and ˜. Function bitXor should duplicate the behavior of the

bit operation ˆ, using only the operations & and ˜.

2



Name Description Rating Max Ops

bitNor(x,y) ˜(x|y) using only & and ˜ 1 8

bitXor(x,y) ˆ using only & and ˜ 2 14

isNotEqual(x,y) x != y? 2 6

getByte(x,n) Extract byte n from x 2 6

copyLSB(x) Set all bits to LSB of x 2 5

logicalShift(x,n) Logical right shift x by n 3 16

bitCount(x) Count number of 1’s in x 4 42

bang(x) Compute !x without using ! operator 4 12

leastBitPos(x) Mark least significant 1 bit 4 6

Table 1: Bit-Level Manipulation Functions.

Name Description Rating Max Ops

tmax(void) largest two’s complement integer 1 4

isNonNegative(x) x >= 0? 3 6

isGreater(x,y) x > y? 3 24

divpwr2(x,n) x/(1<<n) 2 15

abs(x) absolute value 4 10

addOK(x,y) Does x+y overflow? 3 20

Table 2: Arithmetic Functions

Function isNotEqual compares x to y for inequality. As with all predicate operations, it should return 1

if the tested condition holds and 0 otherwise.

Function getByte extracts a byte from a word. The bytes within a word are ordered from 0 (least signif-

icant) to 3 (most significant). Function copyLSB replicates a copy of the least significant bit in all 32 bits

of the result. Function logicalShift performs logical right shifts. You may assume the shift amount n

satisfies 1 ≤ n ≤ 31.

Function bitCount returns a count of the number of 1’s in the argument. Function bang computes logical

negation without using the ! operator. Function leastBitPos generates a mask consisting of a single bit

marking the position of the least significant one bit in the argument. If the argument equals 0, it returns 0.

Part II: Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’s complement representation of integers.

Function tmax returns the largest integer.

Function isNonNegative determines whether x is less than or equal to 0.

Function isGreater determines whether x is greater than y.

3



Function divpwr2 divides its first argument by 2
n, where n is the second argument. You may assume that

0 ≤ n ≤ 30. It must round toward zero.

Function abs is equivalent to the expression x<0?-x:x, giving the absolute value of x for all values other

than TMin .

Function addOK determines whether its two arguments can be added together without overflow.

Advice

You are welcome to do your code development using any system or compiler you choose. Just make sure

that the version you turn in compiles and runs correctly on Wilkes. If it doesn’t compile, we can’t grade

it.

The dlc program, a modified version of an ANSI C compiler, will be used to check your programs for

compliance with the coding style rules. The typical usage is

./dlc bits.c

Type ./dlc -help for a list of command line options. The README file is also helpful. Some notes on

dlc:

• The dlc program runs silently unless it detects a problem.

• Don’t include <stdio.h> in your bits.c file, as it confuses dlc and results in some non-intuitive

error messages.

Check the file README for documentation on running the btest program. You’ll find it helpful to work

through the functions one at a time, testing each one as you go. You can use the -f flag to instruct btest

to test only a single function, e.g., ./btest -f isPositive.

Handin Instructions

• Make sure you have included your identifying information in your file bits.c.

• Remove any extraneous print statements.

• Use cs105submit to submit bits.c. You can also run make submit.

• If you discover a mistake, simply submit the file again.

Notes

DLC requires strict ANSI C. That means you can’t do a few things that the GNU C Compiler (gcc) allows.

For example, you can’t do this:

4



int mask = 0x55 + (0x55 << 8);

mask = mask + (mask << 16);

int shift = (x >> 1);

int sum = (shift & mask) + (x & mask);

because in ANSI C all of your variable declarations must come at the beginning of a function. Once you

have written a non-declaration statement, you can no longer make any new declarations.

The other point that you must remember is that in ANSI C you cannot make // comments.

To help you remember this, the supplied Makefile invokes the -pedantic flag, which makes gcc refuse

to accept non-ANSI C. For this reason you should compile using make, not by invoking gcc directly (which

in any case is a bad habit that you should purge from your fingers).

5


