
CS 105
Web Server

1 About Hints
There is a large “Hints” section (Section 7) at the end of this handout. Be sure to read the entire
handout and the hints before starting work, and refer back to the hints frequently while you are
writing and debugging your program.

2 ABOUT SECURITY
The Web server you will write is willing to send arbitrary files to its clients; it is very low-security.
For that reason, DO NOT leave your server running longer than necessary to test it. Also, be
certain that you only run it on Wilkes. We will periodically scan Wilkes for leftover servers and
kill them.

3 Introduction
A Web server is a program that accepts requests in the HTTP format and sends responses using the
same protocol. A modern server can handle many forms of request and many ways of producing a
response. We’ll attack a simpler problem.

In this lab, you will write a simple Web server that can send the contents of text and HTML
files to a client. Your server will be powerful enough to send simple Web pages to a browser—
but not good enough to implement amazon.com! To keep things simple, we will only handle the
original HTTP protocol, HTTP/1.0, which all browsers can speak. The lab will help you understand
network programming basics, the HTTP protocol, and string processing in the C language.

For extra credit, you can upgrade your server so that it uses threads to handle multiple clients
concurrently.

3.1 Logistics
As always, you must work with your partner. Handin will be electronic, using cs105submit.

1

3.2 Handout
The handout is distributed in a tar file named network-handout.tar, which you will find
linked from the lab Web page. Start by copying network-handout.tar to a (protected) di-
rectory in which you plan to do your work. Then give the following command:

tar xvf networklab-handout.tar

This will cause a number of files to be unpacked in the directory:

Makefile A Makefile that will build your Web server. You should always compile using make
so that you compile with the correct options.

index.html A trivial HTML file that you can use for testing.

webserver.c A skeleton for the Web server (see below). This is the only file you will hand in.

networklab.pdf A copy of this writeup.

At the top of webserver.c is a comment where you can put your names. Just after all the
#include statements is a variable named “team”, which you should modify to contain your CS
login IDs. Do both now, before you forget!

3.2.1 Manual Pages

Remember that you can read a description of any Unix command or function by using the man
command (“man man” is always a fun thing to do, although the modern version has way too
many options). The Unix manual is divided into chapters; for our purposes the most important
ones are Chapter 1 (user commands to be issued at the command line), Chapter 2 (system calls),
and Chapter 3 (library functions). If you want to read about open, which is a system call, you can
type “man open.” However, sometimes that will give you an answer from the wrong chapter;
in that case you can type “man 2 open” or “man -s 2 open” to explicitly say you want the
page from Chapter (section) 2.

By tradition, manual pages are referenced with the chapter number in parentheses, so when we
speak of strcmp(3) you should type “man 3 strcmp” to learn about that function.

We strongly recommend that before you begin this lab, you familiarize yourself with the follow-
ing manual pages: accept(2) open(2), read(2), write(2), malloc(3), strchr(3),
strcmp(3), strerror(3), strlen(3), strncmp(3), strncpy(3), strpbrk(3),
and strstr(3).

4 Part I (60 points): Implementing a Sequential Web Server
In this part you will implement a sequential (one-client-at-a-time) Web server. Like any good
server, it will write a log of its activity so that a system administrator can see what happened. Your
server will open a socket and listen for connection requests. When it receives a connection, it
will accept it, read the HTTP request, and parse it to determine what file is being requested. It
will then open that file and send it to the client, carefully following the HTTP protocol.

2

If something goes wrong (for example, the file can’t be found, or the client sends a bad request,
or the client tries to access forbidden files) your server must log the problem and return an appro-
priate error to the client, using the proper HTTP protocol. Search the Web for “HTTP response
codes” to get a list of the kinds of errors your server can potentially return; you are only required
to support a few of them (see Section 4.6).

To make the problem more tractable, we have provided scaffolding in webserver.c. That
includes a complete copy of open listenfd from echoserver.c so that you don’t have to
type it in yourself, and an http error function that you can use to send error responses to the
client. It also includes skeletons for most of the functions you will need to write, and a complete
(for this part) logging function.

There are a number of places in the server that you will need to expand. Each of those is
marked with a NEEDSWORK comment; you can search for that string to find the places you must
modify.1

4.1 Logging
Your server should log the first line—the GET line—of each request it receives. In addition, it
should log any unusual situations it encounters, such as bad requests, HTTP errors, clients closing
the connection early, etc. The exact set of events to log is up to you.

We have provided a function, write log, that will format a log entry and write it to a log
file. (It is your responsibility to set up the log file itself; do that in the beginning of main.) The
arguments to write log are:

args This is a pointer to the argument structure that was created by main when the connection
was accepted.

message A string containing a message to be written to the log file. An example would be
"Sending file to client:"

data A second string that, if not NULL, will be appended to the first (with a space separating
them). For example, data might contain the name of the file being sent to the client. For
convenience, data is allowed to end with or without a newline; write log will do the
right thing in either case.

4.2 Port Numbers
Your server should listen for its connection requests on the port number passed in on the command
line:

unix> ./server 15213

You may use any port number p, where 1024 ≤ p ≤ 65535, and p is not currently being used by
any other system or user service (including other students’ proxies). See /etc/services for
a list of the port numbers reserved by other system services. We strongly suggest that you use
one of your team’s login ID numbers (see the id command) to avoid collisions with other
students.

1You will also need to add some variable declarations; we didn’t include NEEDSWORK comments for those.

3

4.3 The HTTP protocol
HTTP/1.0 is a request/response protocol: a client sends a request, and the server sends a response.
In both cases, the message contains four parts. The first three parts are encoded in pure ASCII,
and consists of one or more lines. Each line is terminated by a carriage return and a newline (in C
terms, "\r\n"). The four parts are:

1. A single line that identifies the nature of the request or response.

2. Zero or more “header” lines, each of which contains a nonblank string, a colon, a blank, and
parameter information.

3. A single blank line consisting of just "\r\n".

4. An arbitrary amount of data, which may be in any format (e.g., text, image, sound, video,
PDF, etc.). The format of the data is defined in a header line.

Item 4 is not present in an HTTP request but should always be present in a response.
An example of a near-minimal request is:

GET /index.html HTTP/2.0
User-Agent: CS 105 webget platt+wwart
Host: www.cnn.com:80
<blank line>

This request says that a Web client is contacting www.cnn.com on port 80 and asking to
fetch a file named “index.html”. The client also politely identifies itself (“User-Agent”) with
the string “CS 105 webget platt+wwart”.

An example of a small response (not from CNN!) is:

HTTP/1.0 200 OK
Server: CS 105 Web server platt+wwart
Connection: close
Content-Type: text/html

<html>
This is a minimal Web page.
</html>

Here, the first line says that even though the client might have asked for a more advanced
version of HTTP, the server is going to stick to HTTP/1.0. The “200 OK” part is a numeric
response code (200) and its English translation (“OK”, i.e., everything worked). The header lines
identify the Web server software (including the CS 105 team name); the “Connection: close” line
says that the client should close the connection after receiving the data; and the “Content-Type”
line says that the response is HTML data, i.e., a formatted Web page. These are the only headers
that your Web server needs to generate. After the blank line, the Web page itself appears. In this
case, the file index.html is copied verbatim to the client.

4

As a practical matter, your Web server can ignore all of the header lines in the request that it
receives. It must read those lines, up to the blank line that indicates the end of the request, but it
can be lazy and discard all of the options. The first line, which begins with GET, is the only one
that matters. (Quality Web servers normally log the User-Agent and respond to the other fields,
but that’s too much work!)

There are many headers that are allowed in the response, but again we can get away with just a
few. The server should identify itself out of politeness, and “Connection: close” notifies the client
that the server is going to close the connection after it sends the data (but in truth the “HTTP/1.0”
protocol says the same thing). The really important header is the Content-Type, and your server
will need to offer at least two options there.

4.4 A Threading Note
The supplied code contains a skeleton function for handling server requests. Because you’ll be
adding threading later, the skeleton is written on the assumption that it will run as a thread.
Thus, you might find it easiest to call it as a thread (although it’s not absolutely necessary to
do so—change the “#if 1” in process request to “#if 0” if instead you choose to call
the process request function directly from main).

Because it is set up for threading, main passes arguments to process request in a struc-
ture of type arglist_t. That structure is allocated and initialized (calloc) in main, and
passed by pointer to process request. It is process_request’s job to free that structure.

4.5 HTTP Request Format
Take note that the request format given above involves multiple lines, and is ended by a blank line.
(Actually, the blank line is signaled by the moderately complicated sequence “\r\n\r\n”. As
mentioned, you can ignore the header lines and concentrate on just the first one (in parse_uri).
You only need to handle GET request. However, you need to be cautious about the request format.
In particular, don’t assume that “HTTP/1.0” (or “/1.1” or “2.0”—you need to handle all of those)
appears a certain distance from the end of the request, or that fields are separated by exactly one
blank, or that the request only contains a single line. As a general rule, if you’re counting characters
from the beginning or end of the request, your code will be fragile and will be likely to break with
real Web browsers.

We have provided most of the request parsing code in parse uri, but you must complete it.

4.6 HTTP Response codes
HTTP has approximately a zillion defined response codes that are designed to handle different
situations. You can find descriptions of them on the Internet. They are divided into categories that
are identified by the leading digit (i.e., the 200 series is for success and the 400’s are for errors
made by the client). You are welcome to generate as many different response codes as you wish,
but you must generate the following minimum set of codes, as appropriate:

200 OK Sent when the client “did right” and you are feeding it a valid answer.

5

400 Bad request Sent when the client sends a syntactically invalid request.

403 Forbidden Sent when the client tries to violoate a security restriction. The supplied code
generates a 403 when the pathname contains the string “../”, indicating that it is trying to
access a file outside of the directory tree the server was run in. DO NOT REMOVE THAT
CODE.

404 Not found Sent when the client asked for a file that doesn’t exist.

The supplied version of http error can handle all of the above codes, plus 500 (“Internal
server error”). If you want to add more response codes, you will need to modify http error.

4.7 Serving Up Files
Once you have received, parsed, and validated a request, you need to send the requested file back
to the client. That’s a fairly simple operation:

1. Open the file (and, as a side effect, verify that it exists).

2. Send an HTTP response header (see Section 4.3). If you’re feeling friendly toward the client,
this header could include a Content-Length: parameter; you can determine the length
of a file with stat or fstat.

3. Copy the file by repeatedly reading one block (4096 bytes)and writing it to the client. Do
not attempt to read the entire file before writing it; doing so slows your server and wastes
memory if you do it right, or causes errors if you don’t.

4.8 File Types
As you know, real Web servers can send files of many types, and real clients (browsers) can
handle most or all of those types. The scheme for identifying file types is too complicated for
this lab. Instead, we will use an extremely simple rule: any filename that ends in “.html” will
be considered to be in HTML format (“text/html”),2 and all other files will be ordinary text
(“text/plain”). Your server should set the Content-Type appropriately.

There are a few extra-credit points available for supporting other file types; see Section 6.

4.9 Testing Notes
Web browsers can be remarkably opaque about what went wrong when a Web server misbehaves.
For that reason, we suggest that you do your initial testing with telnet, as discussed in Section 7.
After you have your server working, you can try it with a browser.

It can be very useful to run your server under gdb so that you can step through the code and see
what is happening; this approach is especially helpful with process request. However, gdb
isn’t entirely friendly with threads, so if you plan to use gdb it’s best to start with a non-threaded
server. It will be easy to switch to a threaded version later.

2You are welcome to also recognize “.htm” files as being HTML, in true Windows fashion, but it’s not required.

6

4.10 Details About Functions
This section describes every supplied function and what (if anything) you’ll need to do to make it
work.

We recommend that you begin by studying write log and http error to see how they
work and how you will use them. Then it’s probably best to attack parse uri, followed by
main. When you’ve figured out what you want those functions to do, you can finish pro-
cess request.

Here are all the functions in webserver.c. Functions marked “**” don’t need to be changed;
functions marked “*” need few or no changes depending on your exact approach.

main The main program does a bit of initialization (which you must provide) and then goes
into a loop, waiting for connections. When one arrives, it fills in the argument structure
(args) and invokes process request to handle it. There are two options for calling
process request: you can call it directly, or you can invoke it as a thread. The latter
makes your server perform better but will require a bit of synchronization code in some other
parts of the server.

**open listenfd This is almost identical to the version in the echo server from class. You
don’t need to modify it.

process request This function processes a single request from a single client. As supplied,
it’s set up for threading. If you’re doing a non-threaded version, turn the “#if 1” into
“#if 0”. Look for “READ THIS” to see how to handle errors; you will need to add the
rest of the error handling for the function.

Before process request answers the client, it must log the first line of the request (the
GET) to the log file. You need to add that code. You also need to add the code that actually
sends the response to the client.

**read request This function reads a request from the client and it in a malloced buffer. It
is the responsibility of the caller (process request) to free that buffer. You shouldn’t
need to make any changes to read request.

parse uri This function parses a GET request, extracts the pathname the client wants to re-
trieve, and returns that pathname in a malloced buffer. The caller must free that buffer.
parse uri does fairly extensive error checking on the format of the request. However, it
has one flaw: it assumes that the components of the GET are separated by a single space.
You need to modify it to handle multiple spaces. Also, the code at the end that allocates and
returns the pathname is missing; you must provide that.

copy to client Our solution includes a function named copy_to_client. You are wel-
come to write a similar function of your own. If you do, it’s up to you what to name it, what
its arguments are, and what it does.

*write log This function makes it easy to write the log file (which you opened in main). It
accepts a copy of the argument list from main, plus two strings. It writes those strings to the

7

log file, accompanied by useful information like the current time, the client’s identity, and
the internal ID of the thread that’s doing the work.

As provided, write log is a complete implementation for a non-threaded server. If you
choose a threaded implementation, you will need to think about whether you need to make
any changes to this function.

*http error If an HTTP error happens, http error will generate an appropriate response
and send it to the client. This function is complete as-is, but you will want to study it because
it serves as an example of how to send a client response.

5 Part II (Extra Credit: up to 10 points): Dealing with Con-
current Requests

Real Web servers proxies don’t process requests sequentially, because if one client is slow about
swallowing data (perhaps because it asked for a really large file) it’s not nice to make other clients
wait. Instead, they handle multiple requests concurrently. Once you have a working sequential
logging server, you should alter it to handle multiple requests concurrently. The simplest approach
is to create a new thread to deal with each new connection that arrives, detach that thread, and have
it exit when the connection is terminated.

With this approach, it is possible for multiple peer threads to write to the log file concurrently.
Thus, you will need to use a semaphore or a pthreads mutex to synchronize access to the file such
that only one peer thread can modify it at a time. If you do not synchronize the threads, the log file
might be corrupted, for example by having one line in the file begin in the middle of another.

Note that the skeleton code we provided does not contain any thread synchronization. It is your
responsibility to identify any shared variables and protect them appropriately. Remember to watch
out for thread-unsafe functions!

5.1 Thread Safety and I/O
It will help you to understand how I/O functions interact with threads. You should assume that
any write call can cause data to be intermixed with data from another thread. Functions that call
write indirectly include fprintf, fputs, and fflush, among others.

However, as long as you ensure that only one thread writes at a time, you can safely share a
single open file between threads. In particular, it’s not necessary (and is quite inefficient) for each
thread to open a file, write it, and close it every time you want to generate a log entry.

6 Part III (Extra Credit: up to 5 points): More File Types
As mentioned in Section 4.8, your server only needs to handle HTML files and plain text files.
However, you are welcome to offer a few more file types. In particular, you might wish to support
image/jpeg and image/gif.

8

7 Hints
• The best way to get going on your server is to start with the basic echo server (see the

textbook, Section 11.4.9) and then gradually add functionality that turns the code into a Web
server.

• Initially, you should debug your server using telnet as the client (see the textbook, Section
11.5.3). Try “telnet wilkes.cs.hmc.edu:port” where port is the port your sever
is running on. You can get away without using any headers; simply type the GET request.
Note that you will have to hit Enter twice before your server will respond.

(If you are running entirely on wilkes, you can also use localhost as the hostname in
the URL.

An advantage of testing with telnet is that you can see the response code and response head-
ers; this will help you be sure your server is producing output in the right format. Be sure to
test both normal and error paths.

• After your server is more robust, give it a try with wget(1) or curl(1), both of which
are command-line programs that will fetch one Web page at a time. Warning: by default
both will write their output to a file that matches the name of the file you are fetching, which
means that you should not run them in the same directory your Web server is running in! A
good alternative for wget is to run it as follows:

wget -O - -q http://wilkes.cs.hmc.edu:port/index.html

Again, If you are running wget or curl on Wilkes, you can substitute localhost for
wilkes.cs.hmc.edu.

• Later, test your server with a real browser. For example, you can browse to the same URL
as above.

• Note, however, that you might not be able to run the server on Wilkes and browse to it from
a different machine. The Lab Macs will be able to do that, but our firewall will keep you
away if you’re in the dorms or entirely off-campus.

• Be careful about leaks. When the processing for an HTTP request fails for any reason, the
thread must close all open socket descriptors and free all memory resources before terminat-
ing.

• It’s best to stick to low-level Unix I/O functions (read and write) for dealing with the
network sockets. A reasonable alternative is the RIO package from the textbook; you
can download it from the textbook Web site at http://csapp.cs.cmu.edu/3e/
ics3/code/src/csapp.c and http://csapp.cs.cmu.edu/3e/ics3/code/
include/csapp.h. Do not try to use the Unix “standard I/O” (stdio) functions such
as fgets, fputs, and fprintf.

• Reads and writes can fail for a variety of reasons. The most common read failure is an
errno = ECONNRESET error caused by reading from a connection that has already been
closed by the peer on the other end, typically an overloaded server. The most common write

9

http://csapp.cs.cmu.edu/3e/ics3/code/src/csapp.c
http://csapp.cs.cmu.edu/3e/ics3/code/src/csapp.c
http://csapp.cs.cmu.edu/3e/ics3/code/include/csapp.h
http://csapp.cs.cmu.edu/3e/ics3/code/include/csapp.h

failure is an errno = EPIPE error caused by writing to a connection that has been closed
by its peer on the other end. This can occur, for example, when a user hits their browser’s
Stop button during a long transfer.

• The first time you write to a connection that has been closed by the peer, you will get an error
with errno set to EPIPE. Writing to such a connection a second time elicits a SIGPIPE
signal, whose default action is to terminate the process. For that reason, the supplied main
program uses signal to ignore SIGPIPE.

10

	About Hints
	ABOUT SECURITY
	Introduction
	Logistics
	Handout
	Manual Pages

	Part I (60 points): Implementing a Sequential Web Server
	Logging
	Port Numbers
	The HTTP protocol
	A Threading Note
	HTTP Request Format
	HTTP Response codes
	Serving Up Files
	File Types
	Testing Notes
	Details About Functions

	Part II (Extra Credit: up to 10 points): Dealing with Concurrent Requests
	Thread Safety and I/O

	Part III (Extra Credit: up to 5 points): More File Types
	Hints

