HMC. €83y
5 -

Physically Addressed System 2B
CS 105 O
“Tour of the Black Holes of Computing!” Main memory
0:
1:
Virtual Memory Phisice adaress 2.
CcPU 4:
5:
6:
7:
8: —
Topics :
u Address translation M'l’E
= Motivations for VM
m Accelerating translation with TLBs Data word
Used in “simple” systems like embedded microcontrollers in devices
like cars, elevators, and digital picture frames
_o- CS 105
IHC €Sy IHC €Sy
- 2 A 2
Virtually Addressed System : o What Is Virtual Memory? : o
Main memory If you think it’s there, and it is there...it’s real.
CPU Chip o If you think it’s not there, and it really isn't there...it's nonexistent.
""‘"";{,:';dfess Physical address _3:83 If you think it’s not there, and it really is there...it's transparent.
400:
il LC0 400 s00; If you think it’s there, and it’s not really there...it’s imaginary.
Y y ginary.

600:

700:
800:

Data word
Used in all modern servers, laptops, and smart phones

One of the great ideas in computer science
_3- €S 105

is imaginary memory: it gives you the illusion of a memory
arrangement that’s not physically there.

_4- cs 105

HMC €83y
5k

HMC. €83y
5k

Address Spaces i Why Virtual Memory (VM)? 2B
O O
Linear address space: Ordered set of contiguous non-negative integer addresses: Uses main memory efficiently
0,1,2,3...} m Use DRAM as a cache for parts of a large virtual address space
Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,...,N-1} Simplifies memory management
m Each process gets the same uniform linear address space
Physical address space: Set of M = 2™ physical addresses
{0,1,2,3,...,M-1}
Isolates address spaces
't interf ith her’
Clean distinction between data (bytes) and their attributes (addresses) = One process can t!mter ere Wl.t . another's mtlemory .
X i X i m User program can’t access privileged kernel information and code
Every byte in main memory has one physical address and zero or more virtual addresses
-5- Cs 105 -6- Cs 105
(HMC. CS", (HMC. CS",
. b . . b
VM as Tool for Caching n i DRAM Cache Organization i
O &)
Conceptually, virtual memory is an array of N contiguous bytes stored on DRAM cache organization driven by the enormous miss penalty
disk. = DRAM is about 70x slower than SRAM
The contents of the array on disk are cached in physical memory (DRAM = Hard disk is about 70,000 slower than DRAM
cache)
= These cache blocks are called pages (size is P = 2° bytes) Consequences
Virtual memory Physical memory m Large page (block) size: typically 4-8 KB, sometimes 4 MB
VP 0 [[Unaliocated m Fully associative
VP 1 [Ccached \ Empty | PPO e Any VP can be placed in any PP
e o PPl ® Requires a “large” mapping function — different from CPU caches
u::::::d >< o = Highly sophisticated, expensive replacement algorithms
Cached o~ PP 2mr.1 ® Too complicated and open-ended to be implemented in hardware
vparms | tnmched 1, m Write-back rather than write-through
Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM
-7- Cs 105 -8- Cs 105

HMC €83y
3 ok

Enabling Data Structure: Page Table o

A page table is an array of page table entries (PTEs) that maps virtual
pages to physical pages.
m Per-process kernel data structure in DRAM

IHC €Sy
= 2
Page Hit 2B
©)
Page hit: reference to VM word that is in physical memory (DRAM cache
hit)

. Physical memory Virtual address Physical page (DRAM)
Physical page (DRAM) number or
number or o Valid disk address x:; PPO
Valid _disk address PPO PTEO[0 null
VP2 vp7
PTEO[0 null el 1 — VP4 PP3
L — vPa PP3 L —
1 — 0 .
[1] e 1 <
L L 0 null . Virtual memory
0 null . Virtual memory 0 . N (disk)
[- S (disk) PTE7[1 CbN R
PTE7LL a—| T Memory-resident >~ _ e
Memoryresident *>. T e e e
page table . _ (DRAM) .
(DRAM) AN Sso
—9- 1 —10- 1
9 vp7 Cs 105 10 Cs 105
HMC €83y
-

Page Fault o i

Page fault: reference to VM word that is not in physical memory (DRAM
cache miss)

Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address vP1 PPO
VP2
PTEO| 0 null e
1 —
VP4 PP3
1 —
1] L)
1 S
0 null Virtual memory
0 . RN (disk)
Tl]
Memory resident ‘\\ \\
page table Sl ~
(DRAM) . vP3
Saal VP4
1= VP7 cs 105

Handling Page Fault T

Page miss causes page fault (an exception)

Physical memory
Physical page

Virtual address number or (DRAM)
Valid _disk address MERD PPO
VP2
PTEO| 0 null e
1 —
VP4 PP3
1 —
0 e
1 S
0 null Virtual memory
0 . RN (disk)
FrErla]
Memory resident ~~_ \\
page table Sso ~
(DRAM) S vP3
Saal VP4
VP7

12— cs 105

Handling Page Fault o

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Physical page
number or (DRAM)
Valid disk address vP1 PPO
VP2
PTEO| 0 null .
1 —
VP4 PP3
1 «—
0 e
1 CiS
0 null Virtual memory
0 . RN (disk)
FrErla]
Memoryresident s
P T
(DRAM) S
N
[w7]
-13- w7] S 105

Handling Page Fault i

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Physical page
number or (oRAM)
Valid disk address vP1 PPO
PTEO| 0 null VP2
1 vP7
VP3 PP3
1 «—
1 —
0 .
0 null "~_ Virtual memory
0 . g (disk)
FETL <]
Memory re;:dent AN N
page table
(DRAM)
.
[w7]
-14- w7] s 105

Handling Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Offending instruction is restarted: page hit! .
Physical memory

Physical page
ual address number or (DRAM)
Valid disk address VP1 PP O
PTEO| 0 null s
VP7
n = VP3 PP3
1 -—
0 -
0 null "~ Virtual memory
0 - k. (disk)
Pre7la LA S
Memory resident ~~_ S~
page table \\ So
(DRAM) -~
Key point: Waiting until the miss to copy the page to ~ —
DRAM is known as demand paging
s Cs 105

Allocating Pages

Allocating a new page (VP 5) of virtual memory.

Physical memory

Physical page (DRAM)
number or
Valid _disk address MER PPO
VP2
PTEO| 0 null Vo
1 —
vP3 PP3
1 -—
1 «—
0 -
[O Virtual memory
0 (3 S (disk)
re7L —
Memory resident ~
page table
(DRAM)

T cs 105

HMC €83y
5k

Locality to the Rescue Again! : o

Virtual memory seems terribly inefficient, but it works because of locality.
At any point in time, programs tend to access a set of active virtual pages

called the working set
m Programs with better temporal locality will have smaller working sets

VM as Tool for Memory Management

Key idea: each process has own virtual address space
= Can view memory as a simple linear array

= Mapping function scatters addresses through physical memory
e Well-chosen mappings can improve locality

Address 0

HMC. C83y
5k

Virtual translation Physical
. . . . Address VP 1 Address
If working set size < main memory size Space for VP2 I ———" P37 | Space
m Good performance for one process after compulsory misses Process 1: (DRAM)
wl 1
. . . . (e.g., read-onl
If SUM(working set sizes) > main memory size PPE | Sirarycode)
m Thrashing: Performance meltdown where pages are swapped (copied) in and out virtual ~ ° | PP8_|
continuously Address VP1
Space for VP2
Process 2:
-17- €S 105 -18- N_1:| M.1|:| €S 105
IHC €Sy IHC €Sy
) . . - - . - 1
VM as Tool for Memory Management n i Simplifying Linking and Loading i
Memory allocation L) Memory
i : Linki ng Kernel virtual memory invisible to
m Each virtual page can be mapped to any physical page user code
. P . . . = Each program has similar virtual address User stack
m A virtual page can be stored in different physical pages at different times space (created at runtime) .
. <«—— %rsp
Sharing code and data among processes n Code, stack, and shared libraries always (stack
= Map virtual pages to the same physical page (here: PP 6) start at same virtual address A pointer)
° Address 0 " ! Memory-mapped region for
Virtual : Physica . shared libraries
Address VP 1 translation Address Loading
Space for VP2 \ PP 2 Space m execve allocates virtual pages for .text and
Process 1: (DRAM) .data sections & creates PTEs marked as T bk
N-1 I:l invalid | . Run-time heap
F———1 (e.g. read-only = The .text and .data sections are copied, (created by malloc)
PPE | "ibrary code) page by page, on demand by the virtual
. 0 memory system Read/write segment Loaded
A‘Z’;"”’ - PP8 ry sy (idata, bss) from
ress e
Space for VP2 Read-only segment executable
Process 2: (.init, .text, .rodata) file
-19- N-1 L] M1 I €S 105 -20- 0 Unused €S 105

HMC €83y
5k

VM as Tool for Memory Protection E

Extend PTEs with permission bits

Page fault handler checks these before remapping
m |f violated, send process SIGSEGV (segmentation fault)

VM Address Translation

Virtual Address Space
nV={0,1,.., N-1}

Physical Address Space

HMC. €83y
5k

Physical —
Processi: USER READ WRITE EXEC Address Address Space " P={0,1,..., M-1}
vPo: [Yes | Yes | No | Yes PP 6 Address Translation
VP1: No Yes Yes Yes PP 4 I .
VP2 | Yes | Yes | Yes | No PP2 ERi2 " MAP'_ vV~ P U}
N m For virtual address a:
H RS ® MAP(a) = a’ if data at virtual address a is at physical address a’in P
“PP6 | ® MAP(a) = [J if data at virtual address a is not in physical memory
Processj: USER READ WRITE EXEC Address — » Either invalid or stored on disk
VPO:| No Yes No Yes PP9 PP9
VP1:| Yes Yes Yes Yes PP 6
VP2:| No | Yes | Yes | Yes PP11 PP 11
—21- €S 105 22— CS 105
IHC €Sy IHC €Sy
.) . -)
Address-Translation Symbols 12 Address Translation With a Page Table :

Basic Parameters
m N =2": Number of addresses in virtual address space
= M = 2™ : Number of addresses in physical address space
m P = 2P : Page size (bytes)
Components of the virtual address (VA)
= TLBI: TLB index
= TLBT: TLB tag
m VPO: Virtual page offset
= VPN: Virtual page number

Components of the physical address (PA)

= PPO: Physical page offset (same as VPO)
m PPN: Physical page nhumber

—23— Cs 105

Virtual address
n-1 P p1 o
Page table
base register —| Virtual page number (VPN) | Virtual page offset (VPO) ‘
(PTBR)
Page table address Page table
for process Valid Physical page number (PPN)
L—

Valid bit = 0:
page not in memory
(page fault)

m-1 P p1 0

Physical page number (PPN) | Physical page offset (PPO) ‘

Physical address
24—

Cs 105

(HMC. €83y
5k

Address Translation: Page Hit 2

Address Translation: Page Fault

O O
CPU Chip Pg ! o
4 ore ! ° ',
cPU MMU ;) Cache/ CPU Chip —— PTEA Victim page
PA Memory 3 o cachey o
0o cpu MMU ache Disk
o o DALY New page
Data e
1) Processor sends virtual address to MMU
1) Processor sends virtual address to MMU 2-3) MMU fetches PTE from page table in memory
2-3) MMU fetches PTE from page table in memory 4) Valid bit is zero, so MMU triggers page fault exception
4) MMU sends physical address to cache/memory 5) Handler identifies victim (and, if dirty, pages it out to disk)
5) Cache/memory sends data word to processor 6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction
-25- cs 105 -26- cs 105
‘umc}Csr[(HMC. Csr[
Integrating VM and Cache 2B Speeding up Translation With a TLB Bl
O &)
Page table entries (PTEs) are cached in L1 like any other memory word
PTE m PTEs may be evicted by other data references
CPU Chip I — PTE m PTE hit still requires a small but significant L1 delay (3-4 cycles)
hit o Net effect is to double time needed to access data in L1 cache!
PTEA | rrea FPTEA Solution: Translation Lookaside Buffer (TLB)
CPU VA MMU oA A ea Memory » Tiny set-associative (or fully associative) hardware cache inside MMU
miss = Maps virtual page numbers to physical page numbers
- Data = Contains complete page table entries for small number of pages
’/ L1
Data cache
VA: virtual , PA: physi , PTE: page table entry, PTEA = PTE address
Zo7- €S 105

—28— Cs 105

HMC €83y
-

Accessing the TLB o i

O
MMU uses the VPN portion of the virtual address to access the TLB:
T=2tsets
VPN
TLBT hes tag
of line withinset n-1 p+tp+t-1 p p-1 0
TLB tag (TLBT) [TLB index (TLBI)| VPO
seto |[1] [] e]| [Geed e |
TLBI selects the set
set1 Y] [reg] [re | | el o J | «—
sttt |[o] [ag J [Cpre] | ([Coee] Core 1|
—29— Cs 105

HMC. €83y
-

TLB Hit C

CPU Chip
TLB
o PTE
VPN o
VA PA
CPU MMU o Cache/
Memory
Data
A TLB hit eliminates a cache or memory access to get the PTE
—30- Cs 105

HMC €83y
-

TLB Miss 12

CPU Chip
LB o
(2] PTE
VPN
VA PTEA
CPU MMU Cache/
PA Memory
Data
A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?
31— €S 105

HMC. €83
-

Multi-Level Page Tables o

©)
Level-2
Suppose: Tables
= 4KB (2'2) page size, 48-bit virtual address space, 8-byte PTE
Problem:
= Would need a 512 GB page table! Level-1
® 248 % 212 ¥ 23 = 239 pytes Table

Common solution: Multi-level page table

Example: 2-level page table
m Level 1 table (always memory-resident): each PTE points to a
page table

m Level 2 table (paged in and out like any other data): each PTE
points to a page
—32- Cs 105

HMC €83y
-

A Two-Level Page Table Hierarchy 32

Translating With a k-level Page Table

HMC. €83y

Level-1 Level-2 Virtual
page table page tables memory
VPO Page table
/ base register
PTEO PTEO (PTBR)
VP 1023 2K allocated VM pages

PTE1 P’TE"1.023 VP 1022 for code and data n-1 VIRTUAL ADDRESS p-1 0
AE 2] [[VPNT_[; VPN2 | [{VPNK | VPO
PTE 3 (null)
PTE 4 (null) VP 2047 Level-1 Level-2 Level-k

PTEO
page table| page table page table

PTE 5 (null) 1
PTE 6 (null) PTE 1023
PTE7 (null) Gap 6K unallocated VM pages N

PTES

1023 null

(1K-9) PTEs m-1 p-1 0

null PTEs PTE 1023 1023 | l PPN I PPO ‘
unallocated 1023 unallocated pages
\ pages PHYSICAL ADDRESS
1 allocated VM page
32-bit addresses, 4KB pages, 4-byte PTEs Vot for the stack
-33- : Cs 105 -34- Cs 105
HMC €83y
S 1

Programmer’s view of virtual memory
m Each process has its own private linear address space
m Cannot be corrupted by other processes

System view of virtual memory

m Uses memory efficiently by caching virtual memory pages
e Efficient only because of locality

= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point to check
permissions

_35- cs 105

