
CS 134:
Operating Systems

Course Introduction

1 / 32

CS 134:
Operating Systems

Course Introduction

20
12

-1
2-

06

CS34



Overview

Class Introduction
Administrivia
Course Purpose

Real and Not-So-Real Systems
OS/161

Class Rules

Resources

What is an Operating System?
Some Ideas

Taxonomies

2 / 32

Overview

Class Introduction
Administrivia
Course Purpose

Real and Not-So-Real Systems
OS/161

Class Rules

Resources

What is an Operating System?
Some Ideas

Taxonomies

20
12

-1
2-

06

CS34

Overview



Class Introduction Administrivia

Basic Course Information

I Prerequisites: CS105
I Highly recommend CS 105, 140, etc.

I Web page: http://www.cs.hmc.edu/~geoff/cs134
I Email: geoff@cs.hmc.edu
I Office: Olin 1245

I Office hours on Web page
I Will be changed in first few weeks of term

3 / 32

Basic Course Information

I Prerequisites: CS105
I Highly recommend CS 105, 140, etc.

I Web page: http://www.cs.hmc.edu/~geoff/cs134
I Email: geoff@cs.hmc.edu
I Office: Olin 1245

I Office hours on Web page
I Will be changed in first few weeks of term

20
12

-1
2-

06

CS34
Class Introduction

Administrivia
Basic Course Information

http://www.cs.hmc.edu/~geoff/cs134
geoff@cs.hmc.edu
http://www.cs.hmc.edu/~geoff/cs134
geoff@cs.hmc.edu


Class Introduction Course Purpose

Class Exercise

You’ve signed up for this course, but are you clear what it is
about?

I What are you hoping to learn, and why it matters?
I What’s the overlap with other courses you have taken and will

take?
I What OS-related topics do you know from taking 105?

Develop your answers
I Individually (3 minutes)
I In a group (3 minutes)

4 / 32

Class Exercise

You’ve signed up for this course, but are you clear what it is
about?

I What are you hoping to learn, and why it matters?
I What’s the overlap with other courses you have taken and will

take?
I What OS-related topics do you know from taking 105?

Develop your answers
I Individually (3 minutes)
I In a group (3 minutes)20

12
-1

2-
06

CS34
Class Introduction

Course Purpose

Class Exercise



Class Introduction Course Purpose

What Are You Looking Forward To?

Discuss with the people around you:
I A topic you want to learn more about. . .
I A skill you’d like to better develop. . .

Compare notes on prior knowledge with the people around you. . .

5 / 32

What Are You Looking Forward To?

Discuss with the people around you:
I A topic you want to learn more about. . .
I A skill you’d like to better develop. . .

Compare notes on prior knowledge with the people around you. . .

20
12

-1
2-

06

CS34
Class Introduction

Course Purpose

What Are You Looking Forward To?



Class Introduction Course Purpose

Class Exercise

What are you going to do to get the most out of this class?
I In class?
I Outside of class?

Develop answers
I Individually (3 minutes)
I In a group (3 minutes)

6 / 32

Class Exercise

What are you going to do to get the most out of this class?
I In class?
I Outside of class?

Develop answers
I Individually (3 minutes)
I In a group (3 minutes)20

12
-1

2-
06

CS34
Class Introduction

Course Purpose

Class Exercise



Class Introduction Course Purpose

“Official” Course Outline

Design and implementation of operating systems,
including processes, memory management,
synchronization, scheduling, protection, filesystems,
and I/O. These concepts are used to illustrate wider
concepts in the design of other large software
systems, including simplicity; efficiency;
event-driven programming; abstraction design;
client-server architecture; mechanism vs. policy;
orthogonality; naming and binding; static vs.
dynamic, space vs. time, and other tradeoffs;
optimization; caching; and managing large
codebases. Group projects provide experience in
working with and extending a real operating system.

Are you looking forward to working with a real operating system?

7 / 32

“Official” Course Outline

Design and implementation of operating systems,
including processes, memory management,
synchronization, scheduling, protection, filesystems,
and I/O. These concepts are used to illustrate wider
concepts in the design of other large software
systems, including simplicity; efficiency;
event-driven programming; abstraction design;
client-server architecture; mechanism vs. policy;
orthogonality; naming and binding; static vs.
dynamic, space vs. time, and other tradeoffs;
optimization; caching; and managing large
codebases. Group projects provide experience in
working with and extending a real operating system.

Are you looking forward to working with a real operating system?

20
12

-1
2-

06

CS34
Class Introduction

Course Purpose

“Official” Course Outline

This slide has animations.



Class Introduction Course Purpose

“Official” Course Outline

Design and implementation of operating systems,
including processes, memory management,
synchronization, scheduling, protection, filesystems,
and I/O. These concepts are used to illustrate wider
concepts in the design of other large software
systems, including simplicity; efficiency;
event-driven programming; abstraction design;
client-server architecture; mechanism vs. policy;
orthogonality; naming and binding; static vs.
dynamic, space vs. time, and other tradeoffs;
optimization; caching; and managing large
codebases. Group projects provide experience in
working with and extending a real operating system.

Are you looking forward to working with a real operating system?

7 / 32

“Official” Course Outline

Design and implementation of operating systems,
including processes, memory management,
synchronization, scheduling, protection, filesystems,
and I/O. These concepts are used to illustrate wider
concepts in the design of other large software
systems, including simplicity; efficiency;
event-driven programming; abstraction design;
client-server architecture; mechanism vs. policy;
orthogonality; naming and binding; static vs.
dynamic, space vs. time, and other tradeoffs;
optimization; caching; and managing large
codebases. Group projects provide experience in
working with and extending a real operating system.

Are you looking forward to working with a real operating system?

20
12

-1
2-

06

CS34
Class Introduction

Course Purpose

“Official” Course Outline

This slide has animations.



Class Introduction Course Purpose

“Official” Course Outline

Design and implementation of operating systems,
including processes, memory management,
synchronization, scheduling, protection, filesystems,
and I/O. These concepts are used to illustrate wider
concepts in the design of other large software
systems, including simplicity; efficiency;
event-driven programming; abstraction design;
client-server architecture; mechanism vs. policy;
orthogonality; naming and binding; static vs.
dynamic, space vs. time, and other tradeoffs;
optimization; caching; and managing large
codebases. Group projects provide experience in
working with and extending a real operating system.

Are you looking forward to working with a real operating system?

7 / 32

“Official” Course Outline

Design and implementation of operating systems,
including processes, memory management,
synchronization, scheduling, protection, filesystems,
and I/O. These concepts are used to illustrate wider
concepts in the design of other large software
systems, including simplicity; efficiency;
event-driven programming; abstraction design;
client-server architecture; mechanism vs. policy;
orthogonality; naming and binding; static vs.
dynamic, space vs. time, and other tradeoffs;
optimization; caching; and managing large
codebases. Group projects provide experience in
working with and extending a real operating system.

Are you looking forward to working with a real operating system?

20
12

-1
2-

06

CS34
Class Introduction

Course Purpose

“Official” Course Outline

This slide has animations.



Real and Not-So-Real Systems

Real Systems

System Source files Lines of code Number of functions

GCC (MIPS) 1060 837,353 5647

GDB (MIPS) 2463 1,374,680 6859

Linux Kernel (2.4.x) 684 + 10,040 402,534 + 4,079,951 6366 + 39,552

Linux Kernel (2.6.x) 19,779 8,230,479 19,498 + 67,049

Mac OS X (Panther) 1895 + . . . 751,440 + . . . 8200 + 43,871

Mac OS X (Leopard) 2211 + . . . 1,077,164 + . . . 9740 + 43,810

CS 70 Noronic 14 1702 55

OS/161 144 19,124 537

8 / 32

Real Systems

System Source files Lines of code Number of functions

GCC (MIPS) 1060 837,353 5647

GDB (MIPS) 2463 1,374,680 6859

Linux Kernel (2.4.x) 684 + 10,040 402,534 + 4,079,951 6366 + 39,552

Linux Kernel (2.6.x) 19,779 8,230,479 19,498 + 67,049

Mac OS X (Panther) 1895 + . . . 751,440 + . . . 8200 + 43,871

Mac OS X (Leopard) 2211 + . . . 1,077,164 + . . . 9740 + 43,810

CS 70 Noronic 14 1702 55

OS/161 144 19,124 537

20
12

-1
2-

06

CS34
Real and Not-So-Real Systems

Real Systems

This slide has animations.



Real and Not-So-Real Systems

Real Systems

System Source files Lines of code Number of functions

GCC (MIPS) 1060 837,353 5647

GDB (MIPS) 2463 1,374,680 6859

Linux Kernel (2.4.x) 684 + 10,040 402,534 + 4,079,951 6366 + 39,552

Linux Kernel (2.6.x) 19,779 8,230,479 19,498 + 67,049

Mac OS X (Panther) 1895 + . . . 751,440 + . . . 8200 + 43,871

Mac OS X (Leopard) 2211 + . . . 1,077,164 + . . . 9740 + 43,810

CS 70 Noronic 14 1702 55

OS/161 144 19,124 537

8 / 32

Real Systems

System Source files Lines of code Number of functions

GCC (MIPS) 1060 837,353 5647

GDB (MIPS) 2463 1,374,680 6859

Linux Kernel (2.4.x) 684 + 10,040 402,534 + 4,079,951 6366 + 39,552

Linux Kernel (2.6.x) 19,779 8,230,479 19,498 + 67,049

Mac OS X (Panther) 1895 + . . . 751,440 + . . . 8200 + 43,871

Mac OS X (Leopard) 2211 + . . . 1,077,164 + . . . 9740 + 43,810

CS 70 Noronic 14 1702 55

OS/161 144 19,124 537

20
12

-1
2-

06

CS34
Real and Not-So-Real Systems

Real Systems

This slide has animations.



Real and Not-So-Real Systems OS/161

What is OS/161?

System/161 simulates a real machine
I MIPS processor
I Bus with several I/O devices (Serial I/O, Disk Controller, etc.)
I “Remote” debugging support

OS/161 runs on System/161
I Unix-like
I Working
I Unfinished (lots there, lots for you to do...)

9 / 32

What is OS/161?

System/161 simulates a real machine
I MIPS processor
I Bus with several I/O devices (Serial I/O, Disk Controller, etc.)
I “Remote” debugging support

OS/161 runs on System/161
I Unix-like
I Working
I Unfinished (lots there, lots for you to do...)

20
12

-1
2-

06

CS34
Real and Not-So-Real Systems

OS/161
What is OS/161?



Real and Not-So-Real Systems OS/161

Real Systems

System Source files Lines of code Number of functions

GCC (MIPS) 1060 837,353 5647

GDB (MIPS) 2463 1,374,680 6859

Linux Kernel (2.4.x) 684 + 10,040 402,534 + 4,079,951 6366 + 39,552

Linux Kernel (2.6.x) 19,779 8,230,479 19,498 + 67,049

Mac OS X (Panther) 1895 + . . . 751,440 + . . . 8200 + 43,871

Mac OS X (Leopard) 2211 + . . . 1,077,164 + . . . 9740 + 43,810

CS 70 Noronic 14 1702 55

OS/161 144 19,124 537

10 / 32

Real Systems

System Source files Lines of code Number of functions

GCC (MIPS) 1060 837,353 5647

GDB (MIPS) 2463 1,374,680 6859

Linux Kernel (2.4.x) 684 + 10,040 402,534 + 4,079,951 6366 + 39,552

Linux Kernel (2.6.x) 19,779 8,230,479 19,498 + 67,049

Mac OS X (Panther) 1895 + . . . 751,440 + . . . 8200 + 43,871

Mac OS X (Leopard) 2211 + . . . 1,077,164 + . . . 9740 + 43,810

CS 70 Noronic 14 1702 55

OS/161 144 19,124 537

20
12

-1
2-

06

CS34
Real and Not-So-Real Systems

OS/161
Real Systems

This slide has animations.



Real and Not-So-Real Systems OS/161

OS/161 Quickstart

OS/161 is written in C If you need a refresher, see:
http://people.cs.uchicago.edu/~iancooke/osstuff/
ccc.html

You cannot understand all of OS/161 all at once
I Real programs are like this

11 / 32

OS/161 Quickstart

OS/161 is written in C If you need a refresher, see:
http://people.cs.uchicago.edu/~iancooke/osstuff/
ccc.html

You cannot understand all of OS/161 all at once
I Real programs are like this

20
12

-1
2-

06

CS34
Real and Not-So-Real Systems

OS/161
OS/161 Quickstart

http://people.cs.uchicago.edu/~iancooke/osstuff/ccc.html
http://people.cs.uchicago.edu/~iancooke/osstuff/ccc.html
http://people.cs.uchicago.edu/~iancooke/osstuff/ccc.html
http://people.cs.uchicago.edu/~iancooke/osstuff/ccc.html


Class Rules

Group Programming

Basic rules
I Done in pairs, but not necessarily “pair programming”
I Plan ahead of time when you will get together
I Plan first before coding, decide who will do what
I Document who wrote what
I Understand all code your pair develops
I Don’t be a jerk

12 / 32

Group Programming

Basic rules
I Done in pairs, but not necessarily “pair programming”
I Plan ahead of time when you will get together
I Plan first before coding, decide who will do what
I Document who wrote what
I Understand all code your pair develops
I Don’t be a jerk

20
12

-1
2-

06

CS34
Class Rules

Group Programming



Class Rules

Honor Code

You can
I Talk to other members of the class about assignments and

project work

“In your head” rule:

If you discuss a problem with someone else, you must
leave with everything in your head. You can’t take away
anything on paper or electronically.

You may not
I Use an answer someone else has told you without

understanding it
I Misrepresent other people’s work as your own
I Use the Internet to find answers to assignments

13 / 32

Honor Code

You can
I Talk to other members of the class about assignments and

project work

“In your head” rule:

If you discuss a problem with someone else, you must
leave with everything in your head. You can’t take away
anything on paper or electronically.

You may not
I Use an answer someone else has told you without

understanding it
I Misrepresent other people’s work as your own
I Use the Internet to find answers to assignments

20
12

-1
2-

06

CS34
Class Rules

Honor Code

This slide has animations.



Class Rules

Honor Code

You should
I Talk to other members of the class about assignments and

project work

“In your head” rule:

If you discuss a problem with someone else, you must
leave with everything in your head. You can’t take away
anything on paper or electronically.

You may not
I Use an answer someone else has told you without

understanding it
I Misrepresent other people’s work as your own
I Use the Internet to find answers to assignments

13 / 32

Honor Code

You should
I Talk to other members of the class about assignments and

project work

“In your head” rule:

If you discuss a problem with someone else, you must
leave with everything in your head. You can’t take away
anything on paper or electronically.

You may not
I Use an answer someone else has told you without

understanding it
I Misrepresent other people’s work as your own
I Use the Internet to find answers to assignments

20
12

-1
2-

06

CS34
Class Rules

Honor Code

This slide has animations.



Class Rules

Honor Code

You should
I Talk to other members of the class about assignments and

project work
“In your head” rule:

If you discuss a problem with someone else, you must
leave with everything in your head. You can’t take away
anything on paper or electronically.

You may not
I Use an answer someone else has told you without

understanding it
I Misrepresent other people’s work as your own
I Use the Internet to find answers to assignments

13 / 32

Honor Code

You should
I Talk to other members of the class about assignments and

project work
“In your head” rule:

If you discuss a problem with someone else, you must
leave with everything in your head. You can’t take away
anything on paper or electronically.

You may not
I Use an answer someone else has told you without

understanding it
I Misrepresent other people’s work as your own
I Use the Internet to find answers to assignments

20
12

-1
2-

06

CS34
Class Rules

Honor Code

This slide has animations.



Class Rules

Peer Review & Grading

After an assignment is submitted, I may ask your classmates to
I Review your patch
I Rank your patch
I Use your patch

The winning patch does need to work. You wrote it, you support it.

14 / 32

Peer Review & Grading

After an assignment is submitted, I may ask your classmates to
I Review your patch
I Rank your patch
I Use your patch

The winning patch does need to work. You wrote it, you support it.

20
12

-1
2-

06

CS34
Class Rules

Peer Review & Grading



Class Rules

Grading, Course Component Weights, etc.

Prof. O’Neill weighted the course components as follows. I plan to
follow that weighting in broad outline, but reserve the right to tinker
as necessary. (In particular, there isn’t likely to be a Wiki.)

48% Assignments
9% Patch review

12% Midterm
18% Final
5% Class Participation
5% Wiki Participation
3% In-class Topic Presentations

15 / 32

Grading, Course Component Weights, etc.

Prof. O’Neill weighted the course components as follows. I plan to
follow that weighting in broad outline, but reserve the right to tinker
as necessary. (In particular, there isn’t likely to be a Wiki.)

48% Assignments
9% Patch review

12% Midterm
18% Final
5% Class Participation
5% Wiki Participation
3% In-class Topic Presentations20

12
-1

2-
06

CS34
Class Rules

Grading, Course Component Weights, etc.



Resources

Textbook

Modern Operating Systems, Andrew S. Tanenbaum,
3rd Edition, ISBN 978-0136006633

16 / 32

Textbook

Modern Operating Systems, Andrew S. Tanenbaum,
3rd Edition, ISBN 978-0136006633

20
12

-1
2-

06

CS34
Resources

Textbook



Resources

Other Resources...

Besides the textbook
I Me: Olin 1245 or cs134help@cs.hmc.edu
I Website: http://www.cs.hmc.edu/~geoff/cs134/
I Other members of the class

Don’t be afraid to ask for help!

17 / 32

Other Resources...

Besides the textbook
I Me: Olin 1245 or cs134help@cs.hmc.edu
I Website: http://www.cs.hmc.edu/~geoff/cs134/
I Other members of the class

Don’t be afraid to ask for help!

20
12

-1
2-

06

CS34
Resources

Other Resources...

cs134help@cs.hmc.edu
http://www.cs.hmc.edu/~geoff/cs134/
cs134help@cs.hmc.edu
http://www.cs.hmc.edu/~geoff/cs134/


Resources

Mailing Lists

You must make sure you’re on
I cs-134-l@hmc.edu

Mail listkeeper@hmc.edu with help in body for more details

18 / 32

Mailing Lists

You must make sure you’re on
I cs-134-l@hmc.edu

Mail listkeeper@hmc.edu with help in body for more details

20
12

-1
2-

06

CS34
Resources

Mailing Lists

cs-134-l@hmc.edu
listkeeper@hmc.edu
cs-134-l@hmc.edu
listkeeper@hmc.edu


Resources

Knuth!

Knuth “provided platform” for homework
I Submit code from Knuth (early and often!)
I Can use ssh to log in remotely

19 / 32

Knuth!

Knuth “provided platform” for homework
I Submit code from Knuth (early and often!)
I Can use ssh to log in remotely

20
12

-1
2-

06

CS34
Resources

Knuth!



Resources

Linux and OS X

If you have your own machine, you can use that too. But you’ll
need to:

I Install (following provided instructions)
I System/161
I OS/161 toolchain

I Sync your code onto Knuth to submit it

20 / 32

Linux and OS X

If you have your own machine, you can use that too. But you’ll
need to:

I Install (following provided instructions)
I System/161
I OS/161 toolchain

I Sync your code onto Knuth to submit it

20
12

-1
2-

06

CS34
Resources

Linux and OS X



What is an Operating System?

What is an Operating System Anyway?

Class Exercise: Devise three separate definitions. Discuss.

21 / 32

What is an Operating System Anyway?

Class Exercise: Devise three separate definitions. Discuss.

20
12

-1
2-

06

CS34
What is an Operating System?

What is an Operating System Anyway?

Several slides follow that aren’t on
handout.



What is an Operating System? Some Ideas

It’s A Programmer’s Toolkit

Provide useful functionality to programs:
I Prevent duplicated work
I Promote reuse

22 / 32

It’s A Programmer’s Toolkit

Provide useful functionality to programs:
I Prevent duplicated work
I Promote reuse

20
12

-1
2-

06

CS34
What is an Operating System?

Some Ideas
It’s A Programmer’s Toolkit



What is an Operating System? Some Ideas

It’s a Control Program

Provide the rules for the how the machine will operate:
I Control the operation of the I/O devices
I Ensure smooth running of the machine

23 / 32

It’s a Control Program

Provide the rules for the how the machine will operate:
I Control the operation of the I/O devices
I Ensure smooth running of the machine

20
12

-1
2-

06

CS34
What is an Operating System?

Some Ideas
It’s a Control Program



What is an Operating System? Some Ideas

It’s an Abstraction Layer

Make the machine “nicer”, easier to program, higher level. . .
I Hide some of the idiosyncrasies of the machine
I Provide functionality the underlying machine doesn’t have

Hardware

Operating System

Application

User

24 / 32

It’s an Abstraction Layer

Make the machine “nicer”, easier to program, higher level. . .
I Hide some of the idiosyncrasies of the machine
I Provide functionality the underlying machine doesn’t have

Hardware

Operating System

Application

User

20
12

-1
2-

06

CS34
What is an Operating System?

Some Ideas
It’s an Abstraction Layer



What is an Operating System? Some Ideas

It’s an Abstraction Layer

Make the machine “nicer”, easier to program, higher level. . .
I Hide some of the idiosyncrasies of the machine
I Provide functionality the underlying machine doesn’t have

Hardware

Operating System

Application

User

The Core Services and Application Services layers and the Carbon and Cocoa application
environments are packaged in umbrella frameworks (described in the chapter “Umbrella
Frameworks” (page 97)). Many public APIs of the kernel environment are exported through
headers found in /usr/include.

The first part of this chapter, as summarized in the foregoing paragraphs, presents the architecture
of Mac OS X as layers of system software. Following this static perspective of Mac OS X is a more
dynamic view that traces the progress of a user event through the system. A typical event in Mac
OS X originates when the user manipulates an input device such as a mouse or a keyboard. The
device driver associated with that device, through the I/O Kit, creates a low-level event, puts it
in the window server’s event queue, and notifies the window server. The window server
dispatches the event to the appropriate run-loop port of the target process. There the event is
picked up by the Carbon Event Manager and forwarded to the event-handling mechanism
appropriate to the application environment. Events can also be asynchronous, such as a network
packet containing configuration changes.

A Layered Perspective

A common way to look at complex software is to separate out parts of that software into “layers.”
Visually depicted, one layer sits on top of another, with the most fundamental layer on the bottom.
This kind of diagram suggests the general interfaces and dependencies between the layers of
software. The higher layers of software, which are the closest to actual application code, depend
on the layer immediately under them, and that intermediate layer depends on an even lower
layer.

Mac OS X is reducible to such a perspective. Figure 3-1 (page 40) illustrates the general structure
of Mac OS X system software as interdependent layers of libraries, frameworks, and services.

Figure 3-1 Mac OS X as layers of system software

BSDCarbon Cocoa Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

Although this diagram does help clarify the overall architecture, there are dangers in the
necessarily over-simplified view it presents. The Mac OS X services and subsystems that one
application uses—and how it uses them—can be very different from those used by another
application, even one of a similar type. Dependencies and interfaces at the different levels can
vary from program to program depending on individual requirements and realities.

With that caveat aside, let’s take a guided tour through the layers depicted in this diagram.

40 A Layered Perspective
© Apple Computer, Inc. 2003

C H A P T E R  3

System Architecture

24 / 32

It’s an Abstraction Layer

Make the machine “nicer”, easier to program, higher level. . .
I Hide some of the idiosyncrasies of the machine
I Provide functionality the underlying machine doesn’t have

Hardware

Operating System

Application

User

The Core Services and Application Services layers and the Carbon and Cocoa application
environments are packaged in umbrella frameworks (described in the chapter “Umbrella
Frameworks” (page 97)). Many public APIs of the kernel environment are exported through
headers found in /usr/include.

The first part of this chapter, as summarized in the foregoing paragraphs, presents the architecture
of Mac OS X as layers of system software. Following this static perspective of Mac OS X is a more
dynamic view that traces the progress of a user event through the system. A typical event in Mac
OS X originates when the user manipulates an input device such as a mouse or a keyboard. The
device driver associated with that device, through the I/O Kit, creates a low-level event, puts it
in the window server’s event queue, and notifies the window server. The window server
dispatches the event to the appropriate run-loop port of the target process. There the event is
picked up by the Carbon Event Manager and forwarded to the event-handling mechanism
appropriate to the application environment. Events can also be asynchronous, such as a network
packet containing configuration changes.

A Layered Perspective

A common way to look at complex software is to separate out parts of that software into “layers.”
Visually depicted, one layer sits on top of another, with the most fundamental layer on the bottom.
This kind of diagram suggests the general interfaces and dependencies between the layers of
software. The higher layers of software, which are the closest to actual application code, depend
on the layer immediately under them, and that intermediate layer depends on an even lower
layer.

Mac OS X is reducible to such a perspective. Figure 3-1 (page 40) illustrates the general structure
of Mac OS X system software as interdependent layers of libraries, frameworks, and services.

Figure 3-1 Mac OS X as layers of system software

BSDCarbon Cocoa Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

Although this diagram does help clarify the overall architecture, there are dangers in the
necessarily over-simplified view it presents. The Mac OS X services and subsystems that one
application uses—and how it uses them—can be very different from those used by another
application, even one of a similar type. Dependencies and interfaces at the different levels can
vary from program to program depending on individual requirements and realities.

With that caveat aside, let’s take a guided tour through the layers depicted in this diagram.

40 A Layered Perspective
© Apple Computer, Inc. 2003

C H A P T E R  3

System Architecture

20
12

-1
2-

06

CS34
What is an Operating System?

Some Ideas
It’s an Abstraction Layer



What is an Operating System? Some Ideas

It’s a Virtual Machine

OS provides an environment
This environment can be seen as a “new machine”. . .

Hardware —Physical machine
+ Core OS —Virtual machine

+ OS Libraries —Virtual machine
+ OS Utilities —Virtual machine

+ Application —Virtual machine

25 / 32

It’s a Virtual Machine

OS provides an environment
This environment can be seen as a “new machine”. . .

Hardware —Physical machine
+ Core OS —Virtual machine

+ OS Libraries —Virtual machine
+ OS Utilities —Virtual machine

+ Application —Virtual machine

20
12

-1
2-

06

CS34
What is an Operating System?

Some Ideas
It’s a Virtual Machine



What is an Operating System? Some Ideas

It’s a Protection Layer

Make the machine more robust—less scope for a bug to have
devastating consequences

I OS does everything programs can’t be trusted to do
I OS makes programs play nice with others

26 / 32

It’s a Protection Layer

Make the machine more robust—less scope for a bug to have
devastating consequences

I OS does everything programs can’t be trusted to do
I OS makes programs play nice with others

20
12

-1
2-

06

CS34
What is an Operating System?

Some Ideas
It’s a Protection Layer



What is an Operating System? Some Ideas

It’s a Policy Enforcer

OS provides the mechanisms to enforce various policies

Class Exercise: Examples?

27 / 32

It’s a Policy Enforcer

OS provides the mechanisms to enforce various policies

Class Exercise: Examples?

20
12

-1
2-

06

CS34
What is an Operating System?

Some Ideas
It’s a Policy Enforcer



What is an Operating System? Some Ideas

It’s a Policy Enforcer

OS provides the mechanisms to enforce various policies

Class Exercise: Examples?

27 / 32

It’s a Policy Enforcer

OS provides the mechanisms to enforce various policies

Class Exercise: Examples?

20
12

-1
2-

06

CS34
What is an Operating System?

Some Ideas
It’s a Policy Enforcer



What is an Operating System? Some Ideas

It’s a Resource Manager

The operating system manages physical resources:
I Processor
I Memory
I Storage devices
I Network devices

etc. . .

28 / 32

It’s a Resource Manager

The operating system manages physical resources:
I Processor
I Memory
I Storage devices
I Network devices

etc. . .

20
12

-1
2-

06

CS34
What is an Operating System?

Some Ideas
It’s a Resource Manager



What is an Operating System? Some Ideas

It’s a Resource Manager (cont’d.)

The operating system manages virtual resources:
I Processes
I Files
I Users
I Network connections
I Windows

etc.. . .

29 / 32

It’s a Resource Manager (cont’d.)

The operating system manages virtual resources:
I Processes
I Files
I Users
I Network connections
I Windows

etc.. . .

20
12

-1
2-

06

CS34
What is an Operating System?

Some Ideas
It’s a Resource Manager (cont’d.)



What is an Operating System? Some Ideas

It’s a Product

Many operating systems are sold by commercial companies
I Market vs. technical considerations
I The operating system is what comes in the box marked

“operating system”

30 / 32

It’s a Product

Many operating systems are sold by commercial companies
I Market vs. technical considerations
I The operating system is what comes in the box marked

“operating system”

20
12

-1
2-

06

CS34
What is an Operating System?

Some Ideas
It’s a Product



Taxonomies

Taxonomy of Computer Systems

Different computer systems ask different things from their OS

Class Exercise: Give some dimensions across which computer
systems vary

31 / 32

Taxonomy of Computer Systems

Different computer systems ask different things from their OS

Class Exercise: Give some dimensions across which computer
systems vary

20
12

-1
2-

06

CS34
Taxonomies

Taxonomy of Computer Systems



Taxonomies

Taxonomy of Computer Systems

Different computer systems ask different things from their OS

Class Exercise: Give some dimensions across which computer
systems vary

31 / 32

Taxonomy of Computer Systems

Different computer systems ask different things from their OS

Class Exercise: Give some dimensions across which computer
systems vary

20
12

-1
2-

06

CS34
Taxonomies

Taxonomy of Computer Systems



Taxonomies

Partial Taxonomy of Computer Systems

Different computer systems ask different things from their OS:

Special-purpose ↔ General-purpose
Single-user ↔ Multi-user

Non–Resource-sharing ↔ Resource sharing
Single processor ↔ Multiprocessor

Stand alone ↔ Networked
Centralized ↔ Distributed

Batch ↔ Interactive
Deadline-free ↔ Real-time

Insecure ↔ Secure
Symmetric ↔ Asymmetric

Simple ↔ Complex
Small ↔ Large

Inexpensive ↔ Expensive
etc.

32 / 32

Partial Taxonomy of Computer Systems

Different computer systems ask different things from their OS:

Special-purpose ↔ General-purpose
Single-user ↔ Multi-user

Non–Resource-sharing ↔ Resource sharing
Single processor ↔ Multiprocessor

Stand alone ↔ Networked
Centralized ↔ Distributed

Batch ↔ Interactive
Deadline-free ↔ Real-time

Insecure ↔ Secure
Symmetric ↔ Asymmetric

Simple ↔ Complex
Small ↔ Large

Inexpensive ↔ Expensive
etc.

20
12

-1
2-

06

CS34
Taxonomies

Partial Taxonomy of Computer Systems


	Class Introduction
	Administrivia
	Course Purpose

	Real and Not-So-Real Systems
	OS/161

	Class Rules
	Resources
	What is an Operating System?
	Some Ideas

	Taxonomies

