
CS 134:
Operating Systems

Computer Hardware
Synchronization

1 / 34

CS 134:
Operating Systems

Computer Hardware
Synchronization

20
13

-0
5-

17

CS34

Overview

Administrivia

Hardware
Overview
I/O Hardware
Interrupts

Synchronization
Critical Sections
Hardware Support
Higher-Level Mechanisms

Dining Philosophers

2 / 34

Overview

Administrivia

Hardware
Overview
I/O Hardware
Interrupts

Synchronization
Critical Sections
Hardware Support
Higher-Level Mechanisms

Dining Philosophers20
13

-0
5-

17

CS34

Overview

Administrivia

A Bit on OS/161 & Homeworks

Status: I’m working on it; initial setup takes a bit of time
I So when I post homework, plan for that time!

First assignment will be “get going”

You should have your group formed by now

3 / 34

A Bit on OS/161 & Homeworks

Status: I’m working on it; initial setup takes a bit of time
I So when I post homework, plan for that time!

First assignment will be “get going”

You should have your group formed by now

20
13

-0
5-

17

CS34
Administrivia

A Bit on OS/161 & Homeworks

Administrivia

In the Meantime. . .

Activities to do before Thursday:
I Find out about system calls

I Read manual pages on getpid, stime, readdir
I About how many system calls does Linux have? (Hint: manual

pages live in /usr/share/man
I Run strace (on Knuth or other Linux) on a simple program

such as true, echo, or ls

4 / 34

In the Meantime. . .

Activities to do before Thursday:
I Find out about system calls

I Read manual pages on getpid, stime, readdir
I About how many system calls does Linux have? (Hint: manual

pages live in /usr/share/man
I Run strace (on Knuth or other Linux) on a simple program

such as true, echo, or ls

20
13

-0
5-

17

CS34
Administrivia

In the Meantime. . .

Hardware Overview

Computer Hardware

tape drivesprinterdiskdisk

CPU
disk

controller
printer

controller
tape-drive
controller

memory

memory controller

system bus

on-line

5 / 34

Computer Hardware

tape drivesprinterdiskdisk

CPU
disk

controller
printer

controller
tape-drive
controller

memory

memory controller

system bus

on-line

20
13

-0
5-

17

CS34
Hardware

Overview
Computer Hardware

Hardware Overview

Computer Hardware—CPU & Memory

Need to perform computation!

Fetch
Instruction

Execute
InstructionStart

I Memory contains program instructions and program data
I Processor registers maintain processor state. Registers

include:
I General purpose (address & data) registers
I Instruction pointer (aka program counter)
I Stack pointer(s)
I Control and status registers

6 / 34

Computer Hardware—CPU & Memory

Need to perform computation!

Fetch
Instruction

Execute
InstructionStart

I Memory contains program instructions and program data
I Processor registers maintain processor state. Registers

include:
I General purpose (address & data) registers
I Instruction pointer (aka program counter)
I Stack pointer(s)
I Control and status registers20

13
-0

5-
17

CS34
Hardware

Overview
Computer Hardware—CPU & Memory

Hardware I/O Hardware

Computer Hardware—I/O Devices

Need to communicate with the world!
I I/O devices and CPU execute concurrently
I Devices have hardware controllers

I Handles devices of a particular device type
I Some level of autonomy
I Local buffer

I I/O is from the device to local buffer of controller
tape drivesprinterdiskdisk

CPU
disk

controller
printer

controller
tape-drive
controller

memory

memory controller

system bus

on-line

7 / 34

Computer Hardware—I/O Devices

Need to communicate with the world!
I I/O devices and CPU execute concurrently
I Devices have hardware controllers

I Handles devices of a particular device type
I Some level of autonomy
I Local buffer

I I/O is from the device to local buffer of controller
tape drivesprinterdiskdisk

CPU
disk

controller
printer

controller
tape-drive
controller

memory

memory controller

system bus

on-line

20
13

-0
5-

17

CS34
Hardware

I/O Hardware
Computer Hardware—I/O Devices

Hardware I/O Hardware

Programmed I/O

After I/O starts, control returns to user program only on I/O
completion

I CPU waits until I/O completes.
I At most one I/O request is outstanding at a time

I No simultaneous I/O processing

8 / 34

Programmed I/O

After I/O starts, control returns to user program only on I/O
completion

I CPU waits until I/O completes.
I At most one I/O request is outstanding at a time

I No simultaneous I/O processing

20
13

-0
5-

17

CS34
Hardware

I/O Hardware
Programmed I/O

Hardware I/O Hardware

Polled I/O

Polling == Querying the I/O device
Separate I/O into two parts:

I Initiation
I Polling

Advantages?

9 / 34

Polled I/O

Polling == Querying the I/O device
Separate I/O into two parts:

I Initiation
I Polling

Advantages?

20
13

-0
5-

17

CS34
Hardware

I/O Hardware
Polled I/O

Hardware I/O Hardware

Interrupt-Driven I/O

Separate I/O into two parts:
I Initiation
I Asynchronous notification

10 / 34

Interrupt-Driven I/O

Separate I/O into two parts:
I Initiation
I Asynchronous notification

20
13

-0
5-

17

CS34
Hardware

I/O Hardware
Interrupt-Driven I/O

Hardware I/O Hardware

I/O in User-Level Code

User-level code almost always uses “programmed I/O”
(e.g. read and write on a file)

Why?

11 / 34

I/O in User-Level Code

User-level code almost always uses “programmed I/O”
(e.g. read and write on a file)

Why?

20
13

-0
5-

17

CS34
Hardware

I/O Hardware
I/O in User-Level Code

Hardware Interrupts

Computer Hardware—CPU with Interrupts

CPU needs another feature. . .

Fetch
Instruction

Execute
InstructionStart

Interrupts
Enabled?

No

Yes

Interrupt?No

Yes

Save StateJump to
Handler

12 / 34

Computer Hardware—CPU with Interrupts

CPU needs another feature. . .

Fetch
Instruction

Execute
InstructionStart

Interrupts
Enabled?

No

Yes

Interrupt?No

Yes

Save StateJump to
Handler

20
13

-0
5-

17

CS34
Hardware

Interrupts

Computer Hardware—CPU with Interrupts

Hardware Interrupts

Handling an Interrupt

What needs to happen:
I Save state

I All registers
I Switch stacks?

I Find out what interrupt was. . .
I Polling
I Vectored interrupts

13 / 34

Handling an Interrupt

What needs to happen:
I Save state

I All registers
I Switch stacks?

I Find out what interrupt was. . .
I Polling
I Vectored interrupts

20
13

-0
5-

17

CS34
Hardware

Interrupts

Handling an Interrupt

Hardware Interrupts

Types of Interrupts

Various types
I Software exception (also called a trap)
I Timer
I I/O
I Hardware failure

A modern operating system is interrupt driven

14 / 34

Types of Interrupts

Various types
I Software exception (also called a trap)
I Timer
I I/O
I Hardware failure

A modern operating system is interrupt driven

20
13

-0
5-

17

CS34
Hardware

Interrupts

Types of Interrupts

Hardware Interrupts

Other Hardware Features

We’ve covered interrupts, but hardware has other cool features,
including:

I Caches
I Memory management
I Protection

We’ll come back to hardware as we address these topics.

15 / 34

Other Hardware Features

We’ve covered interrupts, but hardware has other cool features,
including:

I Caches
I Memory management
I Protection

We’ll come back to hardware as we address these topics.

20
13

-0
5-

17

CS34
Hardware

Interrupts

Other Hardware Features

Synchronization

Recap

Solution to I/O waiting was:

I Do something else during I/O!

But doing two (or more) things at once introduces headaches!

16 / 34

Recap

Solution to I/O waiting was:

I Do something else during I/O!

But doing two (or more) things at once introduces headaches!

20
13

-0
5-

17

CS34
Synchronization

Recap

Synchronization

Recap

Solution to I/O waiting was:
I Do something else during I/O!

But doing two (or more) things at once introduces headaches!

16 / 34

Recap

Solution to I/O waiting was:
I Do something else during I/O!

But doing two (or more) things at once introduces headaches!

20
13

-0
5-

17

CS34
Synchronization

Recap

Synchronization

Synchronization

Uncontrolled access to shared data
⇒ Race conditions

17 / 34

Synchronization

Uncontrolled access to shared data
⇒ Race conditions

20
13

-0
5-

17

CS34
Synchronization

Synchronization

Synchronization

Example: The Bounded-Buffer Problem

Two threads:
I Producer: Creates data items
I Consumer: Uses them up

We’ll look at the problem using a shared array. . .

18 / 34

Example: The Bounded-Buffer Problem

Two threads:
I Producer: Creates data items
I Consumer: Uses them up

We’ll look at the problem using a shared array. . .

20
13

-0
5-

17

CS34
Synchronization

Example: The Bounded-Buffer Problem

Synchronization

Okay?

enum { N = 128}; // maximum buffer capacity
volatile item buffer[N]; // the buffer itself
volatile int in = 0; // buffer in cursor (moved by producer)
volatile int out = 0; // buffer out cursor (moved by consumer)

void producer() {
item made_item;
for (; ;) {
made_item = make_item();
while ((in + 1) % N == out) {
/* buffer full---wait */

}
buffer[in] = made_item;
in = (in + 1) % N;

}
}

void consumer() {
item usable_item;
for (; ;) {
while (in == out) {

/* buffer empty---wait */
}
usable_item = buffer[out];
out = (out + 1) % N;
use_item(usable_item);

}
}

19 / 34

Okay?

enum { N = 128}; // maximum buffer capacity
volatile item buffer[N]; // the buffer itself
volatile int in = 0; // buffer in cursor (moved by producer)
volatile int out = 0; // buffer out cursor (moved by consumer)

void producer() {
item made_item;
for (; ;) {

made_item = make_item();
while ((in + 1) % N == out) {

/* buffer full---wait */
}
buffer[in] = made_item;
in = (in + 1) % N;

}
}

void consumer() {
item usable_item;
for (; ;) {

while (in == out) {
/* buffer empty---wait */

}
usable_item = buffer[out];
out = (out + 1) % N;
use_item(usable_item);

}
}

20
13

-0
5-

17

CS34
Synchronization

Okay?

Synchronization

Okay?

enum { N = 128 }; // maximum capacity of the buffer
volatile item buffer[N]; // the buffer itself
volatile int count = 0; // how many things are in the buffer

void producer() {
int in = 0;
item made_item;

for (; ;) {
made_item = make_item();
while (count == N) {
/* buffer full---wait */

}
buffer[in] = made_item;
in = (in + 1) \% N;
++count;

}
}

void consumer() {
int out = 0;
item usable_item;

for (; ;) {
while (count == 0) {

/* buffer empty---wait */
}
usable_item = buffer[out];
out = (out + 1) % N;
--count;
use_item(usable_item);

}
}

20 / 34

Okay?

enum { N = 128 }; // maximum capacity of the buffer
volatile item buffer[N]; // the buffer itself
volatile int count = 0; // how many things are in the buffer

void producer() {
int in = 0;
item made_item;

for (; ;) {
made_item = make_item();
while (count == N) {

/* buffer full---wait */
}
buffer[in] = made_item;
in = (in + 1) \% N;
++count;

}
}

void consumer() {
int out = 0;
item usable_item;

for (; ;) {
while (count == 0) {

/* buffer empty---wait */
}
usable_item = buffer[out];
out = (out + 1) % N;
--count;
use_item(usable_item);

}
}

20
13

-0
5-

17

CS34
Synchronization

Okay?

Synchronization

Atomicity

The MIPS code for ++count is as follows

lw $2,count
nop
addu $2,$2,1
sw $2,count

21 / 34

Atomicity

The MIPS code for ++count is as follows

lw $2,count
nop
addu $2,$2,1
sw $2,count

20
13

-0
5-

17

CS34
Synchronization

Atomicity

Synchronization Critical Sections

Critical-Section Problem

The critical section problem exists where n > 1 processes all
compete to use some shared data

I But not always—certain other conditions apply
I Roughly, different processes see conflicting data

I Code that accesses shared data = critical section
I Must ensure mutual exclusion for critical sections

Generic Example:
/* Shared data... */

void foo()
{
for (; ;) {
/* enter critical section */
foo_cs_actions();
/* leave critical section */
foo_other_actions();

}
}

void bar()
{
for (; ;) {
/* enter critical section */
bar_cs_actions();
/* leave critical section */
bar_other_actions();

}
}

22 / 34

Critical-Section Problem

The critical section problem exists where n > 1 processes all
compete to use some shared data

I But not always—certain other conditions apply
I Roughly, different processes see conflicting data

I Code that accesses shared data = critical section
I Must ensure mutual exclusion for critical sections

Generic Example:
/* Shared data... */

void foo()
{

for (; ;) {
/* enter critical section */
foo_cs_actions();
/* leave critical section */
foo_other_actions();

}
}

void bar()
{

for (; ;) {
/* enter critical section */
bar_cs_actions();
/* leave critical section */
bar_other_actions();

}
}

20
13

-0
5-

17

CS34
Synchronization

Critical Sections
Critical-Section Problem

Synchronization Critical Sections

Critical-Section Problem—Solution Requirements

Must satisfy the following requirements:
I Mutual Exclusion
I Progress
I Bounded Waiting (also known as No Starvation)

(Assume processes don’t hang/die inside the critical section.)

(Can’t assume anything about execution speeds or number of
CPUs.)

23 / 34

Critical-Section Problem—Solution Requirements

Must satisfy the following requirements:
I Mutual Exclusion
I Progress
I Bounded Waiting (also known as No Starvation)

(Assume processes don’t hang/die inside the critical section.)

(Can’t assume anything about execution speeds or number of
CPUs.)

20
13

-0
5-

17

CS34
Synchronization

Critical Sections
Critical-Section Problem—Solution Requirements

Mutual exclusion: If a process is executing in its critical section, then
no other processes can be executing in their critical sections.
Progress: If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the process that will enter its critical section next cannot
be postponed indefinitely.
Bounded waiting: A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has asked to enter its critical section.

Synchronization Critical Sections

Critical-Section Problem—Solution?

/* Shared data---Whose turn it is */
volatile enum { Foo, Bar } turn = Foo;

void foo()
{
for (; ;) {
while (turn != Foo) {
/* let bar take its turn */

}
foo_cs_actions();
turn = Bar;
foo_other_actions();

}
}

void bar()
{
for (; ;) {
while (turn != Bar) {

/* let foo take its turn */
}
bar_cs_actions();
turn = Foo;
bar_other_actions();

}
}

24 / 34

Critical-Section Problem—Solution?

/* Shared data---Whose turn it is */
volatile enum { Foo, Bar } turn = Foo;

void foo()
{

for (; ;) {
while (turn != Foo) {

/* let bar take its turn */
}
foo_cs_actions();
turn = Bar;
foo_other_actions();

}
}

void bar()
{

for (; ;) {
while (turn != Bar) {

/* let foo take its turn */
}
bar_cs_actions();
turn = Foo;
bar_other_actions();

}
}20

13
-0

5-
17

CS34
Synchronization

Critical Sections
Critical-Section Problem—Solution?

Does this code satisfy our requirements?

Synchronization Critical Sections

Critical-Section Problem—Solution?

/* Shared data---Who is busy? */
volatile bool foo_busy = false;
volatile bool bar_busy = false;

void foo()
{
for (; ;) {
foo_busy = true;
while (bar_busy == true) {
/* let bar finish */

}
foo_cs_actions();
foo_busy = false;
foo_other_actions();

}
}

void bar()
{
for (; ;) {
bar_busy = true;
while (foo_busy == true) {

/* let foo finish */
}
bar_cs_actions();
bar_busy = false;
bar_other_actions();

}
}

25 / 34

Critical-Section Problem—Solution?

/* Shared data---Who is busy? */
volatile bool foo_busy = false;
volatile bool bar_busy = false;

void foo()
{

for (; ;) {
foo_busy = true;
while (bar_busy == true) {

/* let bar finish */
}
foo_cs_actions();
foo_busy = false;
foo_other_actions();

}
}

void bar()
{

for (; ;) {
bar_busy = true;
while (foo_busy == true) {

/* let foo finish */
}
bar_cs_actions();
bar_busy = false;
bar_other_actions();

}
}20

13
-0

5-
17

CS34
Synchronization

Critical Sections
Critical-Section Problem—Solution?

Synchronization Hardware Support

Critical-Section Problem—Solution?

How about this version?

void task(const int i)
{
for (; ;) {
splhigh();
cs_actions(i);
spl0();
other_actions(i);

}
}

26 / 34

Critical-Section Problem—Solution?

How about this version?

void task(const int i)
{

for (; ;) {
splhigh();
cs_actions(i);
spl0();
other_actions(i);

}
}20

13
-0

5-
17

CS34
Synchronization

Hardware Support

Critical-Section Problem—Solution?

Synchronization Hardware Support

Critical-Section Problem—Solution?

Or this one?

/* Shared data */
bool lock = false; // shared mutual exclusion lock

void task(const int i)
{
for (; ;) {
while (test_and_set(lock)) {

/* do nothing---wait for lock to be
released */

}
cs_actions(i);
lock = false;
other_actions(i);

}
}

27 / 34

Critical-Section Problem—Solution?

Or this one?

/* Shared data */
bool lock = false; // shared mutual exclusion lock

void task(const int i)
{

for (; ;) {
while (test_and_set(lock)) {

/* do nothing---wait for lock to be
released */

}
cs_actions(i);
lock = false;
other_actions(i);

}
}

20
13

-0
5-

17

CS34
Synchronization

Hardware Support

Critical-Section Problem—Solution?

Synchronization Higher-Level Mechanisms

Semaphores

You’ve seen ’em in 105:

void task(const int i) {
for (; ;) {
P(oursem);
cs_actions(i);
V(oursem);
other_actions(i);

}
}

28 / 34

Semaphores

You’ve seen ’em in 105:

void task(const int i) {
for (; ;) {

P(oursem);
cs_actions(i);
V(oursem);
other_actions(i);

}
}

20
13

-0
5-

17

CS34
Synchronization

Higher-Level Mechanisms

Semaphores

Synchronization Higher-Level Mechanisms

Semaphores

Two fundamental operations
P proberen down dec wait Try to grab the semaphore
V verhogen up inc signal Release the semaphore

Semaphores have an associated count!
I P—Sleep until count is nonzero; once positive, decrement

count
I V—Increment count, wake any sleepers

29 / 34

Semaphores

Two fundamental operations
P proberen down dec wait Try to grab the semaphore
V verhogen up inc signal Release the semaphore

Semaphores have an associated count!
I P—Sleep until count is nonzero; once positive, decrement

count
I V—Increment count, wake any sleepers

20
13

-0
5-

17

CS34
Synchronization

Higher-Level Mechanisms

Semaphores

This slide has animations

Synchronization Higher-Level Mechanisms

Semaphores

Two fundamental operations
P proberen down dec wait Try to grab the semaphore
V verhogen up inc signal Release the semaphore

Semaphores have an associated count!
I P—Sleep until count is nonzero; once positive, decrement

count
I V—Increment count, wake any sleepers

29 / 34

Semaphores

Two fundamental operations
P proberen down dec wait Try to grab the semaphore
V verhogen up inc signal Release the semaphore

Semaphores have an associated count!
I P—Sleep until count is nonzero; once positive, decrement

count
I V—Increment count, wake any sleepers

20
13

-0
5-

17

CS34
Synchronization

Higher-Level Mechanisms

Semaphores

This slide has animations

Synchronization Higher-Level Mechanisms

Bounded Buffer with Semaphores

enum { N = 128 }; // maximum capacity of the buffer
volatile item buffer[N]; // the buffer itself
struct sem *empty_slot; // any free slots? (initialized to N)
struct sem *filled_slot; // any filled slots? (initialized to 0)

void producer()
{
int in = 0;
item made_item;

for (; ;) {
made_item = make_item();
P(empty_slot)
buffer[in] = made_item;
in = (in + 1) % N;
V(filled_slot);

}
}

void consumer()
{
int out = 0;
item usable_item;

for (; ;) {
P(filled_slot);
usable_item = buffer[out];
out = (out + 1) % N;
V(empty_slot);
use_item(usable_item);

}
}

30 / 34

Bounded Buffer with Semaphores

enum { N = 128 }; // maximum capacity of the buffer
volatile item buffer[N]; // the buffer itself
struct sem *empty_slot; // any free slots? (initialized to N)
struct sem *filled_slot; // any filled slots? (initialized to 0)

void producer()
{

int in = 0;
item made_item;

for (; ;) {
made_item = make_item();
P(empty_slot)
buffer[in] = made_item;
in = (in + 1) % N;
V(filled_slot);

}
}

void consumer()
{

int out = 0;
item usable_item;

for (; ;) {
P(filled_slot);
usable_item = buffer[out];
out = (out + 1) % N;
V(empty_slot);
use_item(usable_item);

}
}

20
13

-0
5-

17

CS34
Synchronization

Higher-Level Mechanisms

Bounded Buffer with Semaphores

Synchronization Higher-Level Mechanisms

Bounded Buffer with Semaphores

enum { N = 128 }; // maximum capacity of the buffer
item_queue buffer; // the buffer itself
struct sem *empty_slot; // any free slots? (initialized to N)
struct sem *filled_slot; // any filled slots? (initialized to 0)
struct sem *mutex; // protection for the buffer (initialized to 1)

void producer()
{
item made_item;

for (; ;) {
made_item = make_item();
P(empty_slot)
P(mutex);
put_item(buffer, made_item);
V(mutex);
V(filled_slot);

}
}

void consumer()
{
item usable_item;

for (; ;) {
P(filled_slot);
P(mutex);
usable_item = get_item(buffer);
V(mutex);
V(empty_slot);
use_item(usable_item);

}
}

31 / 34

Bounded Buffer with Semaphores

enum { N = 128 }; // maximum capacity of the buffer
item_queue buffer; // the buffer itself
struct sem *empty_slot; // any free slots? (initialized to N)
struct sem *filled_slot; // any filled slots? (initialized to 0)
struct sem *mutex; // protection for the buffer (initialized to 1)

void producer()
{

item made_item;

for (; ;) {
made_item = make_item();
P(empty_slot)
P(mutex);
put_item(buffer, made_item);
V(mutex);
V(filled_slot);

}
}

void consumer()
{

item usable_item;

for (; ;) {
P(filled_slot);
P(mutex);
usable_item = get_item(buffer);
V(mutex);
V(empty_slot);
use_item(usable_item);

}
}

20
13

-0
5-

17

CS34
Synchronization

Higher-Level Mechanisms

Bounded Buffer with Semaphores

Dining Philosophers

Dining Philosophers

Each philosopher alternates
between periods of

I Thinking
I Eating

Each philosopher
I Shares chopsticks with

neighbors
I Must not starve

Philosophers also must not
deadlock

32 / 34

Dining Philosophers

Each philosopher alternates
between periods of

I Thinking
I Eating

Each philosopher
I Shares chopsticks with

neighbors
I Must not starve

Philosophers also must not
deadlock

20
13

-0
5-

17

CS34
Dining Philosophers

Dining Philosophers

This slide has animations

Dining Philosophers

Dining Philosophers

Each philosopher alternates
between periods of

I Thinking
I Eating

Each philosopher
I Shares chopsticks with

neighbors
I Must not starve

Philosophers also must not
deadlock

32 / 34

Dining Philosophers

Each philosopher alternates
between periods of

I Thinking
I Eating

Each philosopher
I Shares chopsticks with

neighbors
I Must not starve

Philosophers also must not
deadlock

20
13

-0
5-

17

CS34
Dining Philosophers

Dining Philosophers

This slide has animations

Dining Philosophers

Philosophers with Semaphores

enum { N = 5 }; // five philosophers
enum { HUNGRY, THINKING, EATING } state[N]; // everyone’s state
struct sem mutex = 1; // mutual exclusion for critical regions
struct sem s[N]; // one semaphore per philosopher

void philosopher(int i)
{
for (; ;) {
think(); // philosopher is thinking
take_chopsticks(i); // acquire chopsticks (block if need be)
eat(); // yum-yum
put_chopsticks(i);

}
}

void test(int i)
{
if (state[i] == HUNGRY && state[left(i)] != EATING
&& state[right(i)] != EATING) {
state[i] = EATING;
V(s[i]); // let philosopher i eat!

}
}

33 / 34

Philosophers with Semaphores

enum { N = 5 }; // five philosophers
enum { HUNGRY, THINKING, EATING } state[N]; // everyone’s state
struct sem mutex = 1; // mutual exclusion for critical regions
struct sem s[N]; // one semaphore per philosopher

void philosopher(int i)
{

for (; ;) {
think(); // philosopher is thinking
take_chopsticks(i); // acquire chopsticks (block if need be)
eat(); // yum-yum
put_chopsticks(i);

}
}

void test(int i)
{

if (state[i] == HUNGRY && state[left(i)] != EATING
&& state[right(i)] != EATING) {
state[i] = EATING;
V(s[i]); // let philosopher i eat!

}
}

20
13

-0
5-

17

CS34
Dining Philosophers

Philosophers with Semaphores

Dining Philosophers

Dining Philosophers: With Semaphores (cont’d)

void take_chopsticks(int i)
{
P(mutex); // enter critical region
state[i] = HUNGRY;
test(i); // try to acquire 2 chopsticks
V(mutex); // exit critical region
P(s[i]); // block if chopsticks were not acquired

}

void put_chopsticks(int i)
{
P(mutex); // enter critical region
state[i] = THINKING;
test(left(i)); // see if left neighbor can now eat
test(right(i)); // see if right neighbor can now eat
V(mutex); // exit critical region

}

34 / 34

Dining Philosophers: With Semaphores (cont’d)

void take_chopsticks(int i)
{

P(mutex); // enter critical region
state[i] = HUNGRY;
test(i); // try to acquire 2 chopsticks
V(mutex); // exit critical region
P(s[i]); // block if chopsticks were not acquired

}

void put_chopsticks(int i)
{

P(mutex); // enter critical region
state[i] = THINKING;
test(left(i)); // see if left neighbor can now eat
test(right(i)); // see if right neighbor can now eat
V(mutex); // exit critical region

}20
13

-0
5-

17

CS34
Dining Philosophers

Dining Philosophers: With Semaphores (cont’d)

	Administrivia
	Hardware
	Overview
	I/O Hardware
	Interrupts

	Synchronization
	Critical Sections
	Hardware Support
	Higher-Level Mechanisms

	Dining Philosophers

