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Administrivia

A Bit on OS/161 & Homeworks

Status: I’m working on it; initial setup takes a bit of time
I So when I post homework, plan for that time!

First assignment will be “get going”

You should have your group formed by now
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Administrivia

In the Meantime. . .

Activities to do before Thursday:
I Find out about system calls

I Read manual pages on getpid, stime, readdir
I About how many system calls does Linux have? (Hint: manual

pages live in /usr/share/man
I Run strace (on Knuth or other Linux) on a simple program

such as true, echo, or ls
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Hardware Overview

Computer Hardware—CPU & Memory

Need to perform computation!

Fetch 
Instruction

Execute 
InstructionStart

I Memory contains program instructions and program data
I Processor registers maintain processor state. Registers

include:
I General purpose (address & data) registers
I Instruction pointer (aka program counter)
I Stack pointer(s)
I Control and status registers
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Hardware I/O Hardware

Computer Hardware—I/O Devices

Need to communicate with the world!
I I/O devices and CPU execute concurrently
I Devices have hardware controllers

I Handles devices of a particular device type
I Some level of autonomy
I Local buffer

I I/O is from the device to local buffer of controller
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Hardware I/O Hardware

Programmed I/O

After I/O starts, control returns to user program only on I/O
completion

I CPU waits until I/O completes.
I At most one I/O request is outstanding at a time

I No simultaneous I/O processing
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Hardware I/O Hardware

Polled I/O

Polling == Querying the I/O device
Separate I/O into two parts:

I Initiation
I Polling

Advantages?
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Hardware I/O Hardware

Interrupt-Driven I/O

Separate I/O into two parts:
I Initiation
I Asynchronous notification
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Hardware I/O Hardware

I/O in User-Level Code

User-level code almost always uses “programmed I/O”
(e.g. read and write on a file)

Why?
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Hardware Interrupts

Computer Hardware—CPU with Interrupts

CPU needs another feature. . .

Fetch 
Instruction

Execute 
InstructionStart

Interrupts
Enabled?
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Hardware Interrupts

Handling an Interrupt

What needs to happen:
I Save state

I All registers
I Switch stacks?

I Find out what interrupt was. . .
I Polling
I Vectored interrupts
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Hardware Interrupts

Types of Interrupts

Various types
I Software exception (also called a trap)
I Timer
I I/O
I Hardware failure

A modern operating system is interrupt driven
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Hardware Interrupts

Other Hardware Features

We’ve covered interrupts, but hardware has other cool features,
including:

I Caches
I Memory management
I Protection

We’ll come back to hardware as we address these topics.
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Synchronization

Recap

Solution to I/O waiting was:

I Do something else during I/O!

But doing two (or more) things at once introduces headaches!

16 / 34

Recap

Solution to I/O waiting was:

I Do something else during I/O!

But doing two (or more) things at once introduces headaches!

20
13

-0
5-

17

CS34
Synchronization

Recap



Synchronization

Recap

Solution to I/O waiting was:
I Do something else during I/O!

But doing two (or more) things at once introduces headaches!

16 / 34

Recap

Solution to I/O waiting was:
I Do something else during I/O!

But doing two (or more) things at once introduces headaches!

20
13

-0
5-

17

CS34
Synchronization

Recap



Synchronization

Synchronization

Uncontrolled access to shared data
⇒ Race conditions
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Synchronization

Example: The Bounded-Buffer Problem

Two threads:
I Producer: Creates data items
I Consumer: Uses them up

We’ll look at the problem using a shared array. . .
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Synchronization

Okay?

enum { N = 128}; // maximum buffer capacity
volatile item buffer[N]; // the buffer itself
volatile int in = 0; // buffer in cursor (moved by producer)
volatile int out = 0; // buffer out cursor (moved by consumer)

void producer() {
item made_item;
for ( ; ; ) {
made_item = make_item();
while ((in + 1) % N == out) {
/* buffer full---wait */

}
buffer[in] = made_item;
in = (in + 1) % N;

}
}

void consumer() {
item usable_item;
for ( ; ; ) {
while ( in == out) {

/* buffer empty---wait */
}
usable_item = buffer[out];
out = (out + 1) % N;
use_item(usable_item);

}
}

19 / 34

Okay?

enum { N = 128}; // maximum buffer capacity
volatile item buffer[N]; // the buffer itself
volatile int in = 0; // buffer in cursor (moved by producer)
volatile int out = 0; // buffer out cursor (moved by consumer)

void producer() {
item made_item;
for ( ; ; ) {

made_item = make_item();
while ((in + 1) % N == out) {

/* buffer full---wait */
}
buffer[in] = made_item;
in = (in + 1) % N;

}
}

void consumer() {
item usable_item;
for ( ; ; ) {

while ( in == out) {
/* buffer empty---wait */

}
usable_item = buffer[out];
out = (out + 1) % N;
use_item(usable_item);

}
}

20
13

-0
5-

17

CS34
Synchronization

Okay?



Synchronization

Okay?

enum { N = 128 }; // maximum capacity of the buffer
volatile item buffer[N]; // the buffer itself
volatile int count = 0; // how many things are in the buffer

void producer() {
int in = 0;
item made_item;

for ( ; ; ) {
made_item = make_item();
while (count == N) {
/* buffer full---wait */

}
buffer[in] = made_item;
in = (in + 1) \% N;
++count;

}
}

void consumer() {
int out = 0;
item usable_item;

for ( ; ; ) {
while ( count == 0) {

/* buffer empty---wait */
}
usable_item = buffer[out];
out = (out + 1) % N;
--count;
use_item(usable_item);

}
}

20 / 34

Okay?

enum { N = 128 }; // maximum capacity of the buffer
volatile item buffer[N]; // the buffer itself
volatile int count = 0; // how many things are in the buffer

void producer() {
int in = 0;
item made_item;

for ( ; ; ) {
made_item = make_item();
while (count == N) {

/* buffer full---wait */
}
buffer[in] = made_item;
in = (in + 1) \% N;
++count;

}
}

void consumer() {
int out = 0;
item usable_item;

for ( ; ; ) {
while ( count == 0) {

/* buffer empty---wait */
}
usable_item = buffer[out];
out = (out + 1) % N;
--count;
use_item(usable_item);

}
}

20
13

-0
5-

17

CS34
Synchronization

Okay?



Synchronization

Atomicity

The MIPS code for ++count is as follows

lw $2,count
nop
addu $2,$2,1
sw $2,count
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Synchronization Critical Sections

Critical-Section Problem

The critical section problem exists where n > 1 processes all
compete to use some shared data

I But not always—certain other conditions apply
I Roughly, different processes see conflicting data

I Code that accesses shared data = critical section
I Must ensure mutual exclusion for critical sections

Generic Example:
/* Shared data... */

void foo()
{
for ( ; ; ) {
/* enter critical section */
foo_cs_actions();
/* leave critical section */
foo_other_actions();

}
}

void bar()
{
for ( ; ; ) {
/* enter critical section */
bar_cs_actions();
/* leave critical section */
bar_other_actions();

}
}
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Synchronization Critical Sections

Critical-Section Problem—Solution Requirements

Must satisfy the following requirements:
I Mutual Exclusion
I Progress
I Bounded Waiting (also known as No Starvation)

(Assume processes don’t hang/die inside the critical section.)

(Can’t assume anything about execution speeds or number of
CPUs.)
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Mutual exclusion: If a process is executing in its critical section, then
no other processes can be executing in their critical sections.
Progress: If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the process that will enter its critical section next cannot
be postponed indefinitely.
Bounded waiting: A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has asked to enter its critical section.



Synchronization Critical Sections

Critical-Section Problem—Solution?

/* Shared data---Whose turn it is */
volatile enum { Foo, Bar } turn = Foo;

void foo()
{
for ( ; ; ) {
while (turn != Foo) {
/* let bar take its turn */

}
foo_cs_actions();
turn = Bar;
foo_other_actions();

}
}

void bar()
{
for ( ; ; ) {
while (turn != Bar) {

/* let foo take its turn */
}
bar_cs_actions();
turn = Foo;
bar_other_actions();

}
}
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Does this code satisfy our requirements?
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Critical-Section Problem—Solution?

/* Shared data---Who is busy? */
volatile bool foo_busy = false;
volatile bool bar_busy = false;

void foo()
{
for ( ; ; ) {
foo_busy = true;
while (bar_busy == true) {
/* let bar finish */

}
foo_cs_actions();
foo_busy = false;
foo_other_actions();

}
}

void bar()
{
for ( ; ; ) {
bar_busy = true;
while (foo_busy == true) {

/* let foo finish */
}
bar_cs_actions();
bar_busy = false;
bar_other_actions();

}
}
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Synchronization Hardware Support

Critical-Section Problem—Solution?

How about this version?

void task(const int i)
{
for ( ; ; ) {
splhigh();
cs_actions(i);
spl0();
other_actions(i);

}
}
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Synchronization Hardware Support

Critical-Section Problem—Solution?

Or this one?

/* Shared data */
bool lock = false; // shared mutual exclusion lock

void task(const int i)
{
for ( ; ; ) {
while (test_and_set(lock)) {

/* do nothing---wait for lock to be
released */

}
cs_actions(i);
lock = false;
other_actions(i);

}
}
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Synchronization Higher-Level Mechanisms

Semaphores

You’ve seen ’em in 105:

void task(const int i) {
for ( ; ; ) {
P(oursem);
cs_actions(i);
V(oursem);
other_actions(i);

}
}
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Semaphores

Two fundamental operations
P proberen down dec wait Try to grab the semaphore
V verhogen up inc signal Release the semaphore

Semaphores have an associated count!
I P—Sleep until count is nonzero; once positive, decrement

count
I V—Increment count, wake any sleepers

29 / 34

Semaphores

Two fundamental operations
P proberen down dec wait Try to grab the semaphore
V verhogen up inc signal Release the semaphore

Semaphores have an associated count!
I P—Sleep until count is nonzero; once positive, decrement

count
I V—Increment count, wake any sleepers

20
13

-0
5-

17

CS34
Synchronization

Higher-Level Mechanisms

Semaphores

This slide has animations



Synchronization Higher-Level Mechanisms

Semaphores

Two fundamental operations
P proberen down dec wait Try to grab the semaphore
V verhogen up inc signal Release the semaphore

Semaphores have an associated count!
I P—Sleep until count is nonzero; once positive, decrement

count
I V—Increment count, wake any sleepers

29 / 34

Semaphores

Two fundamental operations
P proberen down dec wait Try to grab the semaphore
V verhogen up inc signal Release the semaphore

Semaphores have an associated count!
I P—Sleep until count is nonzero; once positive, decrement

count
I V—Increment count, wake any sleepers

20
13

-0
5-

17

CS34
Synchronization

Higher-Level Mechanisms

Semaphores

This slide has animations



Synchronization Higher-Level Mechanisms

Bounded Buffer with Semaphores

enum { N = 128 }; // maximum capacity of the buffer
volatile item buffer[N]; // the buffer itself
struct sem *empty_slot; // any free slots? (initialized to N)
struct sem *filled_slot; // any filled slots? (initialized to 0)

void producer()
{
int in = 0;
item made_item;

for ( ; ; ) {
made_item = make_item();
P(empty_slot)
buffer[in] = made_item;
in = (in + 1) % N;
V(filled_slot);

}
}

void consumer()
{
int out = 0;
item usable_item;

for ( ; ; ) {
P(filled_slot);
usable_item = buffer[out];
out = (out + 1) % N;
V(empty_slot);
use_item(usable_item);

}
}

30 / 34

Bounded Buffer with Semaphores

enum { N = 128 }; // maximum capacity of the buffer
volatile item buffer[N]; // the buffer itself
struct sem *empty_slot; // any free slots? (initialized to N)
struct sem *filled_slot; // any filled slots? (initialized to 0)

void producer()
{

int in = 0;
item made_item;

for ( ; ; ) {
made_item = make_item();
P(empty_slot)
buffer[in] = made_item;
in = (in + 1) % N;
V(filled_slot);

}
}

void consumer()
{

int out = 0;
item usable_item;

for ( ; ; ) {
P(filled_slot);
usable_item = buffer[out];
out = (out + 1) % N;
V(empty_slot);
use_item(usable_item);

}
}

20
13

-0
5-

17

CS34
Synchronization

Higher-Level Mechanisms

Bounded Buffer with Semaphores



Synchronization Higher-Level Mechanisms

Bounded Buffer with Semaphores

enum { N = 128 }; // maximum capacity of the buffer
item_queue buffer; // the buffer itself
struct sem *empty_slot; // any free slots? (initialized to N)
struct sem *filled_slot; // any filled slots? (initialized to 0)
struct sem *mutex; // protection for the buffer (initialized to 1)

void producer()
{
item made_item;

for ( ; ; ) {
made_item = make_item();
P(empty_slot)
P(mutex);
put_item(buffer, made_item);
V(mutex);
V(filled_slot);

}
}

void consumer()
{
item usable_item;

for ( ; ; ) {
P(filled_slot);
P(mutex);
usable_item = get_item(buffer);
V(mutex);
V(empty_slot);
use_item(usable_item);

}
}
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enum { N = 128 }; // maximum capacity of the buffer
item_queue buffer; // the buffer itself
struct sem *empty_slot; // any free slots? (initialized to N)
struct sem *filled_slot; // any filled slots? (initialized to 0)
struct sem *mutex; // protection for the buffer (initialized to 1)

void producer()
{

item made_item;

for ( ; ; ) {
made_item = make_item();
P(empty_slot)
P(mutex);
put_item(buffer, made_item);
V(mutex);
V(filled_slot);

}
}

void consumer()
{

item usable_item;

for ( ; ; ) {
P(filled_slot);
P(mutex);
usable_item = get_item(buffer);
V(mutex);
V(empty_slot);
use_item(usable_item);

}
}

20
13

-0
5-

17

CS34
Synchronization

Higher-Level Mechanisms

Bounded Buffer with Semaphores



Dining Philosophers

Dining Philosophers

Each philosopher alternates
between periods of

I Thinking
I Eating

Each philosopher
I Shares chopsticks with

neighbors
I Must not starve

Philosophers also must not
deadlock
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Dining Philosophers

Philosophers with Semaphores

enum { N = 5 }; // five philosophers
enum { HUNGRY, THINKING, EATING } state[N]; // everyone’s state
struct sem mutex = 1; // mutual exclusion for critical regions
struct sem s[N]; // one semaphore per philosopher

void philosopher(int i)
{
for ( ; ; ) {
think(); // philosopher is thinking
take_chopsticks(i); // acquire chopsticks (block if need be)
eat(); // yum-yum
put_chopsticks(i);

}
}

void test(int i)
{
if (state[i] == HUNGRY && state[left(i)] != EATING
&& state[right(i)] != EATING) {
state[i] = EATING;
V(s[i]); // let philosopher i eat!

}
}
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void test(int i)
{

if (state[i] == HUNGRY && state[left(i)] != EATING
&& state[right(i)] != EATING) {
state[i] = EATING;
V(s[i]); // let philosopher i eat!

}
}
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Dining Philosophers

Dining Philosophers: With Semaphores (cont’d)

void take_chopsticks(int i)
{
P(mutex); // enter critical region
state[i] = HUNGRY;
test(i); // try to acquire 2 chopsticks
V(mutex); // exit critical region
P(s[i]); // block if chopsticks were not acquired

}

void put_chopsticks(int i)
{
P(mutex); // enter critical region
state[i] = THINKING;
test(left(i)); // see if left neighbor can now eat
test(right(i)); // see if right neighbor can now eat
V(mutex); // exit critical region

}
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Dining Philosophers: With Semaphores (cont’d)

void take_chopsticks(int i)
{

P(mutex); // enter critical region
state[i] = HUNGRY;
test(i); // try to acquire 2 chopsticks
V(mutex); // exit critical region
P(s[i]); // block if chopsticks were not acquired

}

void put_chopsticks(int i)
{

P(mutex); // enter critical region
state[i] = THINKING;
test(left(i)); // see if left neighbor can now eat
test(right(i)); // see if right neighbor can now eat
V(mutex); // exit critical region
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