
CS 134:
Operating Systems

More Synchronization

1 / 21

CS 134:
Operating Systems

More Synchronization

20
13

-0
5-

19

CS34

Overview

More Synchronization
Monitors
Simpler Mechanisms

2 / 21

Overview

More Synchronization
Monitors
Simpler Mechanisms

20
13

-0
5-

19

CS34

Overview

More Synchronization

The Story So Far. . .

Mutual Exclusion
I Basic idea?

Semaphores
I Basic idea?

3 / 21

The Story So Far. . .

Mutual Exclusion
I Basic idea?

Semaphores
I Basic idea?

20
13

-0
5-

19

CS34
More Synchronization

The Story So Far. . .

More Synchronization

Fairness

Just how fair do we need to be. . . ?

Our Take. . .

No one likes semaphores!
I Too low-level
I Too much freedom (& too strange)
I Too hard to get right

Need an alternative. . .

4 / 21

Fairness

Just how fair do we need to be. . . ?

Our Take. . .

No one likes semaphores!
I Too low-level
I Too much freedom (& too strange)
I Too hard to get right

Need an alternative. . .

20
13

-0
5-

19

CS34
More Synchronization

Fairness

More Synchronization

Fairness

Just how fair do we need to be. . . ?

Our Take. . .

No one likes semaphores!
I Too low-level
I Too much freedom (& too strange)
I Too hard to get right

Need an alternative. . .

4 / 21

Fairness

Just how fair do we need to be. . . ?

Our Take. . .

No one likes semaphores!
I Too low-level
I Too much freedom (& too strange)
I Too hard to get right

Need an alternative. . .20
13

-0
5-

19

CS34
More Synchronization

Fairness

More Synchronization Monitors

Monitors

Monitors were devised as an alternative to semaphores
I High-level synchronization construct, based on classes
I Only one task can be running “inside” the class at a time

Declare classes like this:

monitor class MyClass {
public:

/* method declarations only
private:

/* private data and private methods */
};

5 / 21

Monitors

Monitors were devised as an alternative to semaphores
I High-level synchronization construct, based on classes
I Only one task can be running “inside” the class at a time

Declare classes like this:

monitor class MyClass {
public:

/* method declarations only
private:

/* private data and private methods */
};20

13
-0

5-
19

CS34
More Synchronization

Monitors
Monitors

More Synchronization Monitors

Monitors

Basic idea:
I Only one process can be

in the monitor at a time
But what about waiting?

Entrance

queue of
entering

processes

Exit

local data

method 1

method k

initialization code

•

•

•

MONITOR

6 / 21

Monitors

Basic idea:
I Only one process can be

in the monitor at a time
But what about waiting?

Entrance

queue of
entering

processes

Exit

local data

method 1

method k

initialization code

•

•

•

MONITOR

20
13

-0
5-

19

CS34
More Synchronization

Monitors
Monitors

More Synchronization Monitors

Monitors

Basic idea
I Only one process can

be in the monitor at a
time

I cwait(beer) waits for beer
I csignal(beer) signals beer

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

condition cn

cwait(cn)

•

•

•

local data

condition variables

method 1

method k

initialization code

•

•

•

monitor waiting area

MONITOR

7 / 21

Monitors

Basic idea
I Only one process can

be in the monitor at a
time

I cwait(beer) waits for beer
I csignal(beer) signals beer

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

condition cn

cwait(cn)

•

•

•

local data

condition variables

method 1

method k

initialization code

•

•

•

monitor waiting area

MONITOR

20
13

-0
5-

19

CS34
More Synchronization

Monitors
Monitors

More Synchronization Monitors

Monitors

Basic idea
I Only one process can

be in the monitor at a
time

I cwait(beer) waits for beer
I csignal(beer) signals beer

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

urgent queue

csignal

condition cn

cwait(cn)

•

•

•

local data

condition variables

method 1

method k

initialization code

•

•

•

monitor waiting area

MONITOR

8 / 21

Monitors

Basic idea
I Only one process can

be in the monitor at a
time

I cwait(beer) waits for beer
I csignal(beer) signals beer

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

urgent queue

csignal

condition cn

cwait(cn)

•

•

•

local data

condition variables

method 1

method k

initialization code

•

•

•

monitor waiting area

MONITOR

20
13

-0
5-

19

CS34
More Synchronization

Monitors
Monitors

More Synchronization Monitors

Equivalence Claims

How could we show that
I Semaphores aren’t “more powerful” than monitors?
I Monitors aren’t “more powerful” than semaphores?

9 / 21

Equivalence Claims

How could we show that
I Semaphores aren’t “more powerful” than monitors?
I Monitors aren’t “more powerful” than semaphores?

20
13

-0
5-

19

CS34
More Synchronization

Monitors
Equivalence Claims

More Synchronization Simpler Mechanisms

Minimalism. . .

In NP-completeness, you learn SAT, and then the simpler 3-SAT,
which is equivalent.

Can we imagine something “less” than semaphores?

10 / 21

Minimalism. . .

In NP-completeness, you learn SAT, and then the simpler 3-SAT,
which is equivalent.

Can we imagine something “less” than semaphores?

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Minimalism. . .

More Synchronization Simpler Mechanisms

Binary Semaphores

Basic idea?

11 / 21

Binary Semaphores

Basic idea?

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Binary Semaphores

A binary semaphore is similar to test-and-set. If it’s nonzero, one one
process can set it to zero and continue past bsem_dec. If it’s zero,
bsem_inc sets it nonzero and wakes at least one process waiting on
it. Multiple calls to bsem_inc with no intervening bsem_dec will have
no effect. However, it is illegal to do that: you can’t call bsem_inc
unless the semaphore value is currently zero.

More Synchronization Simpler Mechanisms

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count

// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...

struct bsem* mutex; // Protects count
volatile int waiting; // How many waiting

};

12 / 21

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count

// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...

struct bsem* mutex; // Protects count
volatile int waiting; // How many waiting

};

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Semaphores from Binary Semaphores

More Synchronization Simpler Mechanisms

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count

// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...

struct bsem* mutex; // Protects count
volatile int waiting; // How many waiting

};

12 / 21

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count

// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...

struct bsem* mutex; // Protects count
volatile int waiting; // How many waiting

};

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Semaphores from Binary Semaphores

More Synchronization Simpler Mechanisms

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count

// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...
struct bsem* mutex; // Protects count

volatile int waiting; // How many waiting

};

12 / 21

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count

// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...
struct bsem* mutex; // Protects count

volatile int waiting; // How many waiting

};

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Semaphores from Binary Semaphores

More Synchronization Simpler Mechanisms

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count

// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...
struct bsem* mutex; // Protects count
volatile int waiting; // How many waiting

};

12 / 21

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count

// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...
struct bsem* mutex; // Protects count
volatile int waiting; // How many waiting

};

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Semaphores from Binary Semaphores

More Synchronization Simpler Mechanisms

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count
// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...
struct bsem* mutex; // Protects count

volatile int waiting; // How many waiting

};

12 / 21

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count
// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...
struct bsem* mutex; // Protects count

volatile int waiting; // How many waiting

};

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Semaphores from Binary Semaphores

More Synchronization Simpler Mechanisms

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count
// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...
struct bsem* mutex; // Protects count

volatile int waiting; // How many waiting

};

12 / 21

Semaphores from Binary Semaphores

Assume the following binary semaphore operations:

struct bsem* bsem_create (int count);
void bsem_dec (struct bsem* s);
void bsem_inc (struct bsem* s);

Data to implement semaphores...?

struct sem {
volatile int count; // Semaphore count
// +val = sem count, -val = wait count

struct bsem* wait; // Wait here...
struct bsem* mutex; // Protects count

volatile int waiting; // How many waiting

};

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Semaphores from Binary Semaphores

More Synchronization Simpler Mechanisms

Semaphores from Binary Semaphores (cont.)

Initialization:

struct sem* sem_init(int count)
{

struct sem* s = malloc(sizeof(struct sem));
assert(s != NULL && count >= 0);
s->count = count;
s->mutex = bsem_create(1); // Ordinary mutex
s->wait = bsem_create(0); // Mostly locked,

// briefly unlocked
return s;

}

13 / 21

Semaphores from Binary Semaphores (cont.)

Initialization:

struct sem* sem_init(int count)
{
struct sem* s = malloc(sizeof(struct sem));
assert(s != NULL && count >= 0);
s->count = count;
s->mutex = bsem_create(1); // Ordinary mutex
s->wait = bsem_create(0); // Mostly locked,

// briefly unlocked
return s;

}20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Semaphores from Binary Semaphores (cont.)

More Synchronization Simpler Mechanisms

Semaphores from Binary Semaphores (cont.)

Is this code okay?

void sem_dec(struct sem* s)
{

bsem_dec(s->mutex);
--(s->count);
if (s->count < 0) {

bsem_inc(s->mutex);
bsem_dec(s->wait);

}
else {

bsem_inc(s->mutex);
}

}

void sem_inc(struct sem* s)
{
bsem_dec(s->mutex);
++(s->count);
if (s->count <= 0) {

bsem_inc(s->wait);

}

bsem_inc(s->mutex);

}

14 / 21

Semaphores from Binary Semaphores (cont.)

Is this code okay?

void sem_dec(struct sem* s)
{
bsem_dec(s->mutex);
--(s->count);
if (s->count < 0) {
bsem_inc(s->mutex);
bsem_dec(s->wait);

}
else {
bsem_inc(s->mutex);

}
}

void sem_inc(struct sem* s)
{
bsem_dec(s->mutex);
++(s->count);
if (s->count <= 0) {
bsem_inc(s->wait);

}

bsem_inc(s->mutex);

}20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Semaphores from Binary Semaphores (cont.)

There is a race after sem_dec calls bsem_inc on the mutex; we
could sleep on s->wait even though s->count has become
nonzero. We need to ensure that there is exactly one bsem_inc per
wait. For example:

1. Process 1 decs and stops after mutex release

2. Process 2 decs and stops after mutex release

3. Process 3 incs and bumps wait

4. Process 4 incs and re-bumps wait (illegally)

5. Process 1 continues and passes through wait

6. Process 2 continues and waits forever

More Synchronization Simpler Mechanisms

Semaphores from Binary Semaphores (cont.)

Does this version fix the problem?

void sem_dec(struct sem* s)
{

bsem_dec(s->mutex);
--(s->count);
if (s->count < 0) {

bsem_inc(s->mutex);
bsem_dec(s->wait);

}
bsem_inc(s->mutex);

}

void sem_inc(struct sem* s)
{
bsem_dec(s->mutex);
++(s->count);
if (s->count <= 0) {

bsem_inc(s->wait);
}
else {

bsem_inc(s->mutex);
}

}

15 / 21

Semaphores from Binary Semaphores (cont.)

Does this version fix the problem?

void sem_dec(struct sem* s)
{
bsem_dec(s->mutex);
--(s->count);
if (s->count < 0) {
bsem_inc(s->mutex);
bsem_dec(s->wait);

}
bsem_inc(s->mutex);

}

void sem_inc(struct sem* s)
{
bsem_dec(s->mutex);
++(s->count);
if (s->count <= 0) {
bsem_inc(s->wait);

}
else {

bsem_inc(s->mutex);
}

}20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Semaphores from Binary Semaphores (cont.)

The assumption here is that if sem_dec waits, sem_inc would grab
the mutex on its behalf and bump wait. So even if somebody else
gets in between the release of the mutex and the wait, they will
necessarily allow us to pass through. In our previous scenario:

1. Process 1 decs and stops after mutex release

2. Process 2 decs and stops after mutex release

3. Process 3 incs and bumps wait

4. Because the mutex is still held, process 4 can’t proceed. Instead,
one of process 1 & 2 will continue and pass through the wait.

5. Process 1 continues and releases mutex.

6. Process 4 incs and bumps wait

7. Process 2 can now continue and pass through wait.

More Synchronization Simpler Mechanisms

Monitors Revisited

Basic idea
I Only one process can

be in the monitor at a time
I cwait(beer) waits for beer
I csignal(beer) signals beer

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

condition cn

cwait(cn)

•

•

•

local data

condition variables

method 1

method k

initialization code

•

•

•

monitor waiting area

MONITOR

16 / 21

Monitors Revisited

Basic idea
I Only one process can

be in the monitor at a time
I cwait(beer) waits for beer
I csignal(beer) signals beer

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

condition cn

cwait(cn)

•

•

•

local data

condition variables

method 1

method k

initialization code

•

•

•

monitor waiting area

MONITOR

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Monitors Revisited

More Synchronization Simpler Mechanisms

Monitors without Condition Variables

Basic idea
I Only one process can

be in the monitor at a time

Remind you of anything?

Entrance

queue of
entering

processes

Exit

local data

method 1

method k

initialization code

•

•

•

MONITOR

17 / 21

Monitors without Condition Variables

Basic idea
I Only one process can

be in the monitor at a time

Remind you of anything?

Entrance

queue of
entering

processes

Exit

local data

method 1

method k

initialization code

•

•

•

MONITOR

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Monitors without Condition Variables

More Synchronization Simpler Mechanisms

Mutexes / Locks

Like binary semaphores, but with ownership rules:
I You “acquire” the lock
I You “hold” the lock
I You “release” the lock

Someone else can’t release it for you.

18 / 21

Mutexes / Locks

Like binary semaphores, but with ownership rules:
I You “acquire” the lock
I You “hold” the lock
I You “release” the lock

Someone else can’t release it for you.

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Mutexes / Locks

More Synchronization Simpler Mechanisms

Mutexes / Locks

void task(const int i)
{
for (; ;) {
lock_acquire(ourlock);
critical_section_actions(i);
lock_release(ourlock);
other_actions(i);

}
}

Class Exercise

Is bool lock_tryacquire(lock) useful?

19 / 21

Mutexes / Locks

void task(const int i)
{

for (; ;) {
lock_acquire(ourlock);
critical_section_actions(i);
lock_release(ourlock);
other_actions(i);

}
}

Class Exercise

Is bool lock_tryacquire(lock) useful?20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Mutexes / Locks

More Synchronization Simpler Mechanisms

Class Exercise

Can you implement semaphores using mutexes?

Can you implement mutexes using semaphores?

What do mutexes remind you of?

But what’s missing?

Entrance

queue of
entering

processes

Exit

local data

method 1

method k

initialization code

•

•

•

MONITOR

20 / 21

Class Exercise

Can you implement semaphores using mutexes?

Can you implement mutexes using semaphores?

What do mutexes remind you of?

But what’s missing?

Entrance

queue of
entering

processes

Exit

local data

method 1

method k

initialization code

•

•

•

MONITOR

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Class Exercise

More Synchronization Simpler Mechanisms

Class Exercise

Can you implement semaphores using mutexes?

Can you implement mutexes using semaphores?

What do mutexes remind you of?

But what’s missing?

Entrance

queue of
entering

processes

Exit

local data

method 1

method k

initialization code

•

•

•

MONITOR

20 / 21

Class Exercise

Can you implement semaphores using mutexes?

Can you implement mutexes using semaphores?

What do mutexes remind you of?

But what’s missing?

Entrance

queue of
entering

processes

Exit

local data

method 1

method k

initialization code

•

•

•

MONITOR

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Class Exercise

More Synchronization Simpler Mechanisms

Condition Variables (for Mutexes)

What are the operations?

What are the arguments?

Do you need to hold the lock
when you cond_signal or
cond_broadcast?

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

condition cn

cwait(cn)

•

•

•

local data

condition variables

method 1

method k

initialization code

•

•

•

monitor waiting area

MONITOR

21 / 21

Condition Variables (for Mutexes)

What are the operations?

What are the arguments?

Do you need to hold the lock
when you cond_signal or
cond_broadcast?

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

condition cn

cwait(cn)

•

•

•

local data

condition variables

method 1

method k

initialization code

•

•

•

monitor waiting area

MONITOR

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Condition Variables (for Mutexes)

More Synchronization Simpler Mechanisms

Condition Variables (for Mutexes)

What are the operations?

What are the arguments?

Do you need to hold the lock
when you cond_signal or
cond_broadcast?

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

condition cn

cwait(cn)

•

•

•

local data

condition variables

method 1

method k

initialization code

•

•

•

monitor waiting area

MONITOR

21 / 21

Condition Variables (for Mutexes)

What are the operations?

What are the arguments?

Do you need to hold the lock
when you cond_signal or
cond_broadcast?

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

condition cn

cwait(cn)

•

•

•

local data

condition variables

method 1

method k

initialization code

•

•

•

monitor waiting area

MONITOR

20
13

-0
5-

19

CS34
More Synchronization

Simpler Mechanisms

Condition Variables (for Mutexes)

	More Synchronization
	Monitors
	Simpler Mechanisms

