
CS 134:
Operating Systems

Locks and Low-Level Synchronization

1 / 30

CS 134:
Operating Systems

Locks and Low-Level Synchronization

20
13

-0
5-

19

CS34

Overview

Locks and Condition Variables

Beyond Locking

Avoiding Locks

Non-Blocking Synchronization

Avoiding Locks

2 / 30

Overview

Locks and Condition Variables

Beyond Locking

Avoiding Locks

Non-Blocking Synchronization

Avoiding Locks20
13

-0
5-

19

CS34

Overview

Locks and Condition Variables

Basic Operations

lock_acquire(lock) Simple mutual exclusion; locks out other
threads

lock_release(lock) Release held lock
cv_wait(cond, lock) Atomically release lock and wait for signal on

condition variable cond; reacquires lock before
returning

cv_signal(cond, lock) Awaken thread (or all threads) waiting on
(cond, lock)

I lock must be held
I lock not released
I Error if thread waiting on cond with some other

lock
I Which thread selected if multiple waits?
I What behavior if no thread waiting?

3 / 30

Basic Operations

lock_acquire(lock) Simple mutual exclusion; locks out other
threads

lock_release(lock) Release held lock
cv_wait(cond, lock) Atomically release lock and wait for signal on

condition variable cond; reacquires lock before
returning

cv_signal(cond, lock) Awaken thread (or all threads) waiting on
(cond, lock)

I lock must be held
I lock not released
I Error if thread waiting on cond with some other

lock
I Which thread selected if multiple waits?
I What behavior if no thread waiting?

20
13

-0
5-

19

CS34
Locks and Condition Variables

Basic Operations

It turns out that the best no-wait behavior is to discard the signal; that
simplifies coding.
If multiple threads are waiting, it often makes sense to wake them all.

Locks and Condition Variables

Bounded Buffer with Semaphores

enum { N = 128 }; // maximum capacity of the buffer
item_queue buffer; // the buffer itself
struct sem *empty_slot; // any free slots? (initialized to N)
struct sem *filled_slot; // any filled slots? (initialized to 0)
struct sem *mutex; // protection for the buffer (initialized to 1)

void producer()
{
item made_item;

for (; ;) {
made_item = make_item();
P(empty_slot)
P(mutex);
put_item(buffer, made_item);
V(mutex);
V(filled_slot);

}
}

void consumer()
{
item usable_item;

for (; ;) {
P(filled_slot);
P(mutex);
usable_item = get_item(buffer);
V(mutex);
V(empty_slot);
use_item(usable_item);

}
}

4 / 30

Bounded Buffer with Semaphores

enum { N = 128 }; // maximum capacity of the buffer
item_queue buffer; // the buffer itself
struct sem *empty_slot; // any free slots? (initialized to N)
struct sem *filled_slot; // any filled slots? (initialized to 0)
struct sem *mutex; // protection for the buffer (initialized to 1)

void producer()
{

item made_item;

for (; ;) {
made_item = make_item();
P(empty_slot)
P(mutex);
put_item(buffer, made_item);
V(mutex);
V(filled_slot);

}
}

void consumer()
{

item usable_item;

for (; ;) {
P(filled_slot);
P(mutex);
usable_item = get_item(buffer);
V(mutex);
V(empty_slot);
use_item(usable_item);

}
}

20
13

-0
5-

19

CS34
Locks and Condition Variables

Bounded Buffer with Semaphores

Locks and Condition Variables

Bounded Buffer with Locks/CVs

item_queue buffer; // the buffer itself
struct cv *has_space; // any free slots?
struct cv *has_stuff; // any filled slots?
struct lock *mutex; // protection for the buffer

void producer()
{
item made_item;

for (; ;) {
made_item = make_item();
lock_acquire(mutex);
while (isFull(buffer))

cv_wait(has_space, mutex);
put_item(buffer, made_item);
cv_signal(has_stuff, mutex);
lock_release(mutex);

}
}

void consumer()
{
item usable_item;

for (; ;) {
lock_acquire(mutex);
while (isEmpty(buffer))

cv_wait(has_stuff, mutex);
usable_item = get_item(buffer);
cv_signal(has_space, mutex);
lock_release(mutex);
use_item(usable_item);

}
}

5 / 30

Bounded Buffer with Locks/CVs

item_queue buffer; // the buffer itself
struct cv *has_space; // any free slots?
struct cv *has_stuff; // any filled slots?
struct lock *mutex; // protection for the buffer

void producer()
{

item made_item;

for (; ;) {
made_item = make_item();
lock_acquire(mutex);
while (isFull(buffer))

cv_wait(has_space, mutex);
put_item(buffer, made_item);
cv_signal(has_stuff, mutex);
lock_release(mutex);

}
}

void consumer()
{

item usable_item;

for (; ;) {
lock_acquire(mutex);
while (isEmpty(buffer))

cv_wait(has_stuff, mutex);
usable_item = get_item(buffer);
cv_signal(has_space, mutex);
lock_release(mutex);
use_item(usable_item);

}
}

20
13

-0
5-

19

CS34
Locks and Condition Variables

Bounded Buffer with Locks/CVs

Locks and Condition Variables

Readers–Writers Problem

Sometimes an object has
I Readers

I Don’t modify the object
I Can share access with other readers

I Writers
I May change the object
I Cannot share access with others

You know this problem from 105! (In theory. . .)

6 / 30

Readers–Writers Problem

Sometimes an object has
I Readers

I Don’t modify the object
I Can share access with other readers

I Writers
I May change the object
I Cannot share access with others

You know this problem from 105! (In theory. . .)

20
13

-0
5-

19

CS34
Locks and Condition Variables

Readers–Writers Problem

Locks and Condition Variables

Readers/Writers with Locks & CVs

Form groups of 3-4 people. Between you, determine:
I The synchronization objects you’ll need

Then, at the boards, everyone goes up to
I Declare struct rwlock (which might contain multiple

locks) and initialization state
I Write rwlock_readlock & rwlock_readunlock

I Write rwlock_writelock & rwlock_writeunlock

7 / 30

Readers/Writers with Locks & CVs

Form groups of 3-4 people. Between you, determine:
I The synchronization objects you’ll need

Then, at the boards, everyone goes up to
I Declare struct rwlock (which might contain multiple

locks) and initialization state
I Write rwlock_readlock & rwlock_readunlock

I Write rwlock_writelock & rwlock_writeunlock

20
13

-0
5-

19

CS34
Locks and Condition Variables

Readers/Writers with Locks & CVs

Beyond Locking

Message-Based Interprocess Communication

An alternative to communication via shared memory + locks.

I Analogous to sending message by mail, or package by sea
I Provides virtual communications medium
I Requires two basic operations:

I send_message(destination, message)

I receive_message(sender, message)

Class Exercise
send_message and receive_message seem vaguely defined

I What details are missing?
I What are the options?

8 / 30

Message-Based Interprocess Communication

An alternative to communication via shared memory + locks.

I Analogous to sending message by mail, or package by sea
I Provides virtual communications medium
I Requires two basic operations:

I send_message(destination, message)

I receive_message(sender, message)

Class Exercise
send_message and receive_message seem vaguely defined

I What details are missing?
I What are the options?20

13
-0

5-
19

CS34
Beyond Locking

Message-Based Interprocess Communication

Some missing things:

• How to deal with process that has multiple messages waiting?
• Is there a way to receive all mail at once?
• Who passes messages?
• Are messages picked up like mail or interrupting like phone calls?
• Should we store messages? How many? What to do when we can’t

deliver? Wait or discard?
• What can be in a message? Bits? FDs? Memory pages?
• Does receiver need to know sender?
• How reliable is the mail?
• Does a receiver know who the sender is?
• Is there a permissions system?

Some options:

• We can have queues of messages, priority queues, stacks, etc.
• We can store no messages, only 1 message, maybe n messages.

Beyond Locking

Messaging—Design Questions

Questions include:
I Is a “connection” set up between the two processes?

I If so, is the link unidirectional or bidirectional?
I How do processes find the “addresses” of their friends?
I Can many processes send to the same destination?
I Does the sender wait until the receiver receives the

message?
I Does the receiver always know who sent the message?
I Can the receiver restrict who can talk to it?
I Is the capacity of the receiver’s mailbox fixed? (and if so, what

are the limits?)
I Can messages be lost?
I Can messages vary in size or is the size fixed?
I Do messages contain typed data?
I Is the recipient guaranteed to be on the same machine?

9 / 30

Messaging—Design Questions

Questions include:
I Is a “connection” set up between the two processes?

I If so, is the link unidirectional or bidirectional?
I How do processes find the “addresses” of their friends?
I Can many processes send to the same destination?
I Does the sender wait until the receiver receives the

message?
I Does the receiver always know who sent the message?
I Can the receiver restrict who can talk to it?
I Is the capacity of the receiver’s mailbox fixed? (and if so, what

are the limits?)
I Can messages be lost?
I Can messages vary in size or is the size fixed?
I Do messages contain typed data?
I Is the recipient guaranteed to be on the same machine?

20
13

-0
5-

19

CS34
Beyond Locking

Messaging—Design Questions

Beyond Locking

Example: Unix-Domain Sockets with UDP

Sockets call message sources and destinations “ports”
I Textual address (actually a valid filename!)
I Numeric port number

Other properties:
I Is a “connection”set up between the two processes?

I No (“connectionless datagrams”)
I Can a process have more than one port open/listening?

I Yes
I How do processes find the addresses of their friends?

I Prior knowledge (well-known ports)
I Port inheritance from parent process

10 / 30

Example: Unix-Domain Sockets with UDP

Sockets call message sources and destinations “ports”
I Textual address (actually a valid filename!)
I Numeric port number

Other properties:
I Is a “connection”set up between the two processes?

I No (“connectionless datagrams”)
I Can a process have more than one port open/listening?

I Yes
I How do processes find the addresses of their friends?

I Prior knowledge (well-known ports)
I Port inheritance from parent process20

13
-0

5-
19

CS34
Beyond Locking

Example: Unix-Domain Sockets with UDP

Beyond Locking

Example: Unix-Domain Sockets with UDP

Properties (continued):
I Can many processes send to the same destination?

I Yes—Messages arrive in unspecified order
I Can many processes receive at the same destination?

I No
I Does the sender wait until the receiver receives the

message?
I No if mailbox has space for message
I Yes if mailbox is full

I Does the receiver always know who sent the message?
I Usually

I Can the receiver restrict who can talk to it?
I Only by receiving messages and discarding undesirable ones.

11 / 30

Example: Unix-Domain Sockets with UDP

Properties (continued):
I Can many processes send to the same destination?

I Yes—Messages arrive in unspecified order
I Can many processes receive at the same destination?

I No
I Does the sender wait until the receiver receives the

message?
I No if mailbox has space for message
I Yes if mailbox is full

I Does the receiver always know who sent the message?
I Usually

I Can the receiver restrict who can talk to it?
I Only by receiving messages and discarding undesirable ones.

20
13

-0
5-

19

CS34
Beyond Locking

Example: Unix-Domain Sockets with UDP

Beyond Locking

Example: Unix-Domain Sockets with UDP

Properties (continued):
I What is the capacity of the receiver’s mailbox?

I Approximately 32 KB of data.
I Do messages arrive in order?

I Messages from the same sender arrive in order.
I Messages from different senders might not be temporally

ordered
I Can messages be lost?

I Not under OS X, BSD, Linux or Solaris.
I Can messages vary in size or is the size fixed?

I Yes, size can vary, up to a limit.
I Do messages contain typed data?

I Usually no, just bytes
I But can send open file descriptors!!

12 / 30

Example: Unix-Domain Sockets with UDP

Properties (continued):
I What is the capacity of the receiver’s mailbox?

I Approximately 32 KB of data.
I Do messages arrive in order?

I Messages from the same sender arrive in order.
I Messages from different senders might not be temporally

ordered
I Can messages be lost?

I Not under OS X, BSD, Linux or Solaris.
I Can messages vary in size or is the size fixed?

I Yes, size can vary, up to a limit.
I Do messages contain typed data?

I Usually no, just bytes
I But can send open file descriptors!!

20
13

-0
5-

19

CS34
Beyond Locking

Example: Unix-Domain Sockets with UDP

Beyond Locking

Example: Unix-Domain Sockets with UDP

Properties (continued):
I What happens if the receiver dies?

I Messages already delivered to the receiver’s mailbox will be
(silently) lost.

I Future delivery attempts fail with an error.
I Is the recipient guaranteed to be on the same machine?

I Yes.

13 / 30

Example: Unix-Domain Sockets with UDP

Properties (continued):
I What happens if the receiver dies?

I Messages already delivered to the receiver’s mailbox will be
(silently) lost.

I Future delivery attempts fail with an error.
I Is the recipient guaranteed to be on the same machine?

I Yes.

20
13

-0
5-

19

CS34
Beyond Locking

Example: Unix-Domain Sockets with UDP

Beyond Locking

Unix-Domain UDP Sockets—Class Exercise

Could you implement locks using messaging?

14 / 30

Unix-Domain UDP Sockets—Class Exercise

Could you implement locks using messaging?

20
13

-0
5-

19

CS34
Beyond Locking

Unix-Domain UDP Sockets—Class Exercise

Beyond Locking

Unix-Domain UDP Sockets—Class Exercise

Could you implement messaging where sender waits for
reception?

Could you implement messaging that allows multiple receivers?

15 / 30

Unix-Domain UDP Sockets—Class Exercise

Could you implement messaging where sender waits for
reception?

Could you implement messaging that allows multiple receivers?

20
13

-0
5-

19

CS34
Beyond Locking

Unix-Domain UDP Sockets—Class Exercise

Beyond Locking

Messaging—Class Exercise

Consider the following messaging system:
I Named mailboxes

I Can hold arbitrary number of messages
I send_message(mailbox, message)

I Non-blocking send
I Multiple concurrent senders allowed
I Messages can’t be lost (provided mailbox exists)

I message = receive_message(mailbox)
I Blocking receive
I Multiple concurrent receivers allowed (arbitrary but fair choice

as to who receives what)

Question
How could you implement semaphores using this messaging
system?

16 / 30

Messaging—Class Exercise

Consider the following messaging system:
I Named mailboxes

I Can hold arbitrary number of messages
I send_message(mailbox, message)

I Non-blocking send
I Multiple concurrent senders allowed
I Messages can’t be lost (provided mailbox exists)

I message = receive_message(mailbox)
I Blocking receive
I Multiple concurrent receivers allowed (arbitrary but fair choice

as to who receives what)

Question
How could you implement semaphores using this messaging
system?

20
13

-0
5-

19

CS34
Beyond Locking

Messaging—Class Exercise

Avoiding Locks

Atomic Synchronization Instructions

Modern processors often provide help with synchronization
issues.

I Atomic—Provide a read-op-write cycle.
I Simple—just protecting access to one memory word

17 / 30

Atomic Synchronization Instructions

Modern processors often provide help with synchronization
issues.

I Atomic—Provide a read-op-write cycle.
I Simple—just protecting access to one memory word

20
13

-0
5-

19

CS34
Avoiding Locks

Atomic Synchronization Instructions

Avoiding Locks

Test & Set

Pseudocode:

bool test_and_set(bool *addr)
{

bool origval;

atomic {
origval = *addr;

*addr = true;
}
return origval;

Class Exercise:
Useful for. . . ?

18 / 30

Test & Set

Pseudocode:

bool test_and_set(bool *addr)
{

bool origval;

atomic {
origval = *addr;

*addr = true;
}
return origval;

Class Exercise:
Useful for. . . ?

20
13

-0
5-

19

CS34
Avoiding Locks

Test & Set

Have them write a spin lock & then show how busy-waiting is bad.

Avoiding Locks

Swap

Pseudocode:

int swap(int *addr, int newval)
{

int orgival;

atomic {
origval = *addr;

*addr = newval;
}
return origval;

}

Class Exercise:
Useful for. . . ?
Can you write increment?
Limitations. . . ?

19 / 30

Swap

Pseudocode:

int swap(int *addr, int newval)
{

int orgival;

atomic {
origval = *addr;

*addr = newval;
}
return origval;

}

Class Exercise:
Useful for. . . ?
Can you write increment?
Limitations. . . ?

20
13

-0
5-

19

CS34
Avoiding Locks

Swap

Avoiding Locks

Increment?

Try:

void atomic_add(int *i, int delta)
{

int v = *i; // Line 1
for (;;) {

int w = swap(*i, v + delta); // Line 2
if (w == v) // Line 3

break;
v = w; // Line 4

}
}

20 / 30

Increment?

Try:

void atomic_add(int *i, int delta)
{

int v = *i; // Line 1
for (;;) {

int w = swap(*i, v + delta); // Line 2
if (w == v) // Line 3

break;
v = w; // Line 4

}
}20

13
-0

5-
19

CS34
Avoiding Locks

Increment?

The problem here is that we are assuming that what we get from w is
the most recently incremented value from another process, so we can
add delta to that “most recent” value and have a correct new value.
But consider the following sequence:

1. A reads v1 in line 1

2. B increments v to v1 + 1

3. A swaps in line 2, seeing & setting v1 + 1

4. B increments v to v1 + 2

5. B increments v to v1 + 3

6. A assigns in line 4, setting v2 = v1 + 1

7. A swaps in line 2, setting v to v1 + 2

8. A will now set v to v1 + 3, which is wrong!

Avoiding Locks

The Fundamental Problem?

Class Exercise:

Identify the fundamental problem that prevents us from writing
atomic_add correctly.

21 / 30

The Fundamental Problem?

Class Exercise:

Identify the fundamental problem that prevents us from writing
atomic_add correctly.

20
13

-0
5-

19

CS34
Avoiding Locks

The Fundamental Problem?

The difficulty is that we’re replacing *i with v even if *i has changed
in the meantime. We need a way to say “replace *i only if it still has
the value I think it has.” As a bonus, it would be good to (a) know
whether the value changed, and (b) know what the old value was.

Avoiding Locks

Compare & Swap

Pseudocode:

int compare_and_swap(int *addr, int expectedval,
int newval)

{
int origval;
atomic {

origval = *addr;
if (origval == expectedval)

*addr = newval;
}
return origval;

}

Class Exercise:
Useful for. . . ?
Can you write increment?
Limitations. . . ? 22 / 30

Compare & Swap

Pseudocode:

int compare_and_swap(int *addr, int expectedval,
int newval)

{
int origval;
atomic {

origval = *addr;
if (origval == expectedval)

*addr = newval;
}
return origval;

}

Class Exercise:
Useful for. . . ?
Can you write increment?
Limitations. . . ?

20
13

-0
5-

19

CS34
Avoiding Locks

Compare & Swap

Increment with CAS is shown on next
slide (not in handouts).

Avoiding Locks

Increment with CAS

int inc(volatile int *val)
{

int x;
do {

x = *val;
} while (x != compare_and_swap(val, x, x + 1));
return x;

}

23 / 30

Increment with CAS

int inc(volatile int *val)
{

int x;
do {

x = *val;
} while (x != compare_and_swap(val, x, x + 1));
return x;

}

20
13

-0
5-

19

CS34
Avoiding Locks

Increment with CAS

Non-Blocking Synchronization

Ordinary Stack Code (Unsynchronized)

void push(item value)
{

struct stacknode *newnode;

newnode = malloc(...);

newnode->value = value;
newnode->next = top;

top = newnode;
}

bool trypop(item *valueptr)
{

item value;
struct stacknode *oldtop;

if (top == NULL)
return false;

oldtop = top;
top = top->next;

*valueptr = oldtop->value;
free(oldtop);
return true;

}

24 / 30

Ordinary Stack Code (Unsynchronized)

void push(item value)
{
struct stacknode *newnode;

newnode = malloc(...);

newnode->value = value;
newnode->next = top;

top = newnode;
}

bool trypop(item *valueptr)
{
item value;
struct stacknode *oldtop;

if (top == NULL)
return false;

oldtop = top;
top = top->next;

*valueptr = oldtop->value;
free(oldtop);
return true;

}

20
13

-0
5-

19

CS34
Non-Blocking Synchronization

Ordinary Stack Code (Unsynchronized)

Lots of problems here. If two people push, a node will be lost. If two
pop, they might both get the same value (and double-free).

Non-Blocking Synchronization

Non-Blocking Stack Code
void push(item value)
{

struct stacknode *newnode;
struct stacknode *oldtop;

newnode = malloc(...);

newnode->value = value;
do {

oldtop = top;
newnode->next = oldtop;

} while (cas(&top, oldtop,
newnode)
== oldtop);

}

bool trypop(item *valueptr)
{

item value;
struct stacknode *oldtop;
struct stacknode *newtop;

do {
oldtop = top;
if (top == NULL)

return false;
newtop = oldtop->next;

} while (cas(&top, oldtop,
newtop)
== oldtop);

*valueptr = oldtop->value;
free(oldtop);
return true;

}
25 / 30

Non-Blocking Stack Code
void push(item value)
{
struct stacknode *newnode;
struct stacknode *oldtop;

newnode = malloc(...);

newnode->value = value;
do {
oldtop = top;
newnode->next = oldtop;

} while (cas(&top, oldtop,
newnode)
== oldtop);

}

bool trypop(item *valueptr)
{
item value;
struct stacknode *oldtop;
struct stacknode *newtop;

do {
oldtop = top;
if (top == NULL)
return false;

newtop = oldtop->next;
} while (cas(&top, oldtop,

newtop)
== oldtop);

*valueptr = oldtop->value;
free(oldtop);
return true;

}

20
13

-0
5-

19

CS34
Non-Blocking Synchronization

Non-Blocking Stack Code

This almost works. But note that it depends on only loading top
once, and otherwise only using oldtop, to make sure pointer
accesses are consistent. It’s also critical that in trypop, we don’t try
to access oldtop->value until after we are sure we own the node;
otherwise somebody else might have freed it first. Finally, in a system
where freeing memory might return it to the (segfaultable) pool, we
might segfault when we follow oldtop->next.
But there’s a more subtle bug. Suppose that after we assign to
newtop in trypop, somebody else successfully pops a value
(oldtop), frees it, pops another, then pushes two such that the
second reuses oldtop. Now the CAS will work, but what we have in
newtop isn’t necessarily valid! The only cure is to ensure that no free
happens until we’re sure oldtop isn’t going to be used in a
CAS—perhaps by letting all other CPUs run first.

Non-Blocking Synchronization

Load Linked / Store Conditional

Pseudocode:
int load_linked(int *addr)
{

int origval;
atomic {

origval = *addr;
mem_watch(addr);

}
return origval;

}

bool store_conditional(
int *addr, newval)

{
atomic {

switch (
watch_result(addr)) {
case UNCHANGED:

*addr = newval;
return true;

case CHANGED:
return false;

case WASNT_WATCHING:
return false;

}
stop_watching(addr);

}
}

26 / 30

Load Linked / Store Conditional

Pseudocode:
int load_linked(int *addr)
{
int origval;
atomic {
origval = *addr;
mem_watch(addr);

}
return origval;

}

bool store_conditional(
int *addr, newval)

{
atomic {
switch (
watch_result(addr)) {
case UNCHANGED:

*addr = newval;
return true;

case CHANGED:
return false;

case WASNT_WATCHING:
return false;

}
stop_watching(addr);

}
}

20
13

-0
5-

19

CS34
Non-Blocking Synchronization

Load Linked / Store Conditional

Can you write increment? Answer: yes, because you can implement
CAS with this.
But ll/sc is limited, because often only one memory location can be
watched at a time. So if many ll are used at once, all but one might
break. And in any case, there is no guarantee of fairness.

Non-Blocking Synchronization

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)

System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

27 / 30

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)

System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

20
13

-0
5-

19

CS34
Non-Blocking Synchronization

Which Processors Have What. . .

Non-Blocking Synchronization

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)
System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

27 / 30

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)
System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

20
13

-0
5-

19

CS34
Non-Blocking Synchronization

Which Processors Have What. . .

Non-Blocking Synchronization

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)
System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

27 / 30

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)
System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

20
13

-0
5-

19

CS34
Non-Blocking Synchronization

Which Processors Have What. . .

Non-Blocking Synchronization

What Do You Want?

What do you want?

28 / 30

What Do You Want?

What do you want?

20
13

-0
5-

19

CS34
Non-Blocking Synchronization

What Do You Want?

Avoiding Locks

Avoiding Locks & Slow Synchronization

When don’t we need synchronization?

29 / 30

Avoiding Locks & Slow Synchronization

When don’t we need synchronization?

20
13

-0
5-

19

CS34
Avoiding Locks

Avoiding Locks & Slow Synchronization

Avoiding Locks

Bernstein’s Conditions

Given two (sub)tasks, P1 and P2, with
I Input sets I1 and I2
I Output sets O1 and O2:

Safe to run in parallel if
I I1 ∩O2 = ∅
I O1 ∩ I2 = ∅
I O1 ∩O2 = ∅

If unsafe, we say there is “interference” between the tasks.

30 / 30

Bernstein’s Conditions

Given two (sub)tasks, P1 and P2, with
I Input sets I1 and I2
I Output sets O1 and O2:

Safe to run in parallel if
I I1 ∩O2 = ∅
I O1 ∩ I2 = ∅
I O1 ∩O2 = ∅

If unsafe, we say there is “interference” between the tasks.

20
13

-0
5-

19

CS34
Avoiding Locks

Bernstein’s Conditions

A.J. Bernstein, IEEE Transactions on Electronic Computers, October
1966.

	Locks and Condition Variables
	Beyond Locking
	Avoiding Locks
	Non-Blocking Synchronization
	Avoiding Locks

