
CS 134:
Operating Systems
Better Synchronization

1 / 21

CS 134:
Operating Systems
Better Synchronization

20
13

-0
5-

19

CS34

Overview

Aside: Attending a Conference

More Low-Level Synchronization

Higher-Level Primitives
atomic
yield

Avoiding Locks

2 / 21

Overview

Aside: Attending a Conference

More Low-Level Synchronization

Higher-Level Primitives
atomic
yield

Avoiding Locks20
13

-0
5-

19

CS34

Overview

Aside: Attending a Conference

How to Attend a Conference

OSDI is next week

How to get the most out of it?

3 / 21

How to Attend a Conference

OSDI is next week

How to get the most out of it?

20
13

-0
5-

19

CS34
Aside: Attending a Conference

How to Attend a Conference

Aside: Attending a Conference

Tech Sessions

I Program is posted at
https://www.usenix.org/conference/osdi12/
tech-schedule/osdi-12-program

I Mouse over title to get abstract
I Key for full-text versions will be sent this week

I Not required to attend all sessions
I But should be over 50%
I . . . and interest should be in 75%

I Use in-session time wisely
I Treat it like class or colloquium
I If you’re a scribe, take careful notes—you’re the only one!

I Wireless will be available

4 / 21

Tech Sessions

I Program is posted at
https://www.usenix.org/conference/osdi12/
tech-schedule/osdi-12-program

I Mouse over title to get abstract
I Key for full-text versions will be sent this week

I Not required to attend all sessions
I But should be over 50%
I . . . and interest should be in 75%

I Use in-session time wisely
I Treat it like class or colloquium
I If you’re a scribe, take careful notes—you’re the only one!

I Wireless will be available20
13

-0
5-

19

CS34
Aside: Attending a Conference

Tech Sessions

https://www.usenix.org/conference/osdi12/tech-schedule/osdi-12-program
https://www.usenix.org/conference/osdi12/tech-schedule/osdi-12-program
https://www.usenix.org/conference/osdi12/tech-schedule/osdi-12-program
https://www.usenix.org/conference/osdi12/tech-schedule/osdi-12-program

Aside: Attending a Conference

Poster Sessions

I Two sessions Monday & Tuesday evenings
I Often best source of information about cutting-edge research
I Budget your time wisely
I Spend time getting detail on posters that interest you
I Finger food will be provided

5 / 21

Poster Sessions

I Two sessions Monday & Tuesday evenings
I Often best source of information about cutting-edge research
I Budget your time wisely
I Spend time getting detail on posters that interest you
I Finger food will be provided

20
13

-0
5-

19

CS34
Aside: Attending a Conference

Poster Sessions

Aside: Attending a Conference

BOFs

I Late evenings
I Choose wisely—often not terribly informative

6 / 21

BOFs

I Late evenings
I Choose wisely—often not terribly informative

20
13

-0
5-

19

CS34
Aside: Attending a Conference

BOFs

Aside: Attending a Conference

The “Hallway Track”

I Often considered most important part of a conference
I Takes place at breaks, at lunch, poster sessions, etc.
I Chance to learn more, get to know useful people
I Get up your gumption and talk to a stranger!

I Choose small groups (2-3)
I Should have at least one younger person

I OK to talk to anyone who’s alone
I I will introduce you to anybody I’m talking to

I Don’t join if large group (limits exposure)
I Don’t cling (limits variety)

I Good chance to quiz people with interesting papers/posters

7 / 21

The “Hallway Track”

I Often considered most important part of a conference
I Takes place at breaks, at lunch, poster sessions, etc.
I Chance to learn more, get to know useful people
I Get up your gumption and talk to a stranger!

I Choose small groups (2-3)
I Should have at least one younger person

I OK to talk to anyone who’s alone
I I will introduce you to anybody I’m talking to

I Don’t join if large group (limits exposure)
I Don’t cling (limits variety)

I Good chance to quiz people with interesting papers/posters20
13

-0
5-

19

CS34
Aside: Attending a Conference

The “Hallway Track”

More Low-Level Synchronization

Where We Were. . .

Last time we looked at Test-and-Set, Swap, and
Compare-and-Swap

T&S is good for locking; Swap isn’t good for much of anything.
C&S can be used for lock-free synchronization—if you’re very
careful!

8 / 21

Where We Were. . .

Last time we looked at Test-and-Set, Swap, and
Compare-and-Swap

T&S is good for locking; Swap isn’t good for much of anything.
C&S can be used for lock-free synchronization—if you’re very
careful!

20
13

-0
5-

19

CS34
More Low-Level Synchronization

Where We Were. . .

More Low-Level Synchronization

Load Linked / Store Conditional

Pseudocode:
int load_linked(int *addr)
{

int origval;
atomic {

origval = *addr;
mem_watch(addr);

}
return origval;

}

bool store_conditional(
int *addr, newval)

{
atomic {

switch (
watch_result(addr)) {
case UNCHANGED:

*addr = newval;
return true;

case CHANGED:
return false;

case WASNT_WATCHING:
return false;

}
stop_watching(addr);

}
}

9 / 21

Load Linked / Store Conditional

Pseudocode:
int load_linked(int *addr)
{
int origval;
atomic {
origval = *addr;
mem_watch(addr);

}
return origval;

}

bool store_conditional(
int *addr, newval)

{
atomic {
switch (
watch_result(addr)) {
case UNCHANGED:

*addr = newval;
return true;

case CHANGED:
return false;

case WASNT_WATCHING:
return false;

}
stop_watching(addr);

}
}

20
13

-0
5-

19

CS34
More Low-Level Synchronization

Load Linked / Store Conditional

Can you write increment? Answer: yes, because you can implement
CAS with this.
But LL/SC is limited, because often only one memory location can be
watched at a time. So if many LL are used at once, all but one might
break. And in any case, there is no guarantee of fairness.

More Low-Level Synchronization

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)

System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

10 / 21

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)

System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

20
13

-0
5-

19

CS34
More Low-Level Synchronization

Which Processors Have What. . .

More Low-Level Synchronization

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)
System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

10 / 21

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)
System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

20
13

-0
5-

19

CS34
More Low-Level Synchronization

Which Processors Have What. . .

More Low-Level Synchronization

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)
System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

10 / 21

Which Processors Have What. . .

Instructions to perform simple changes in atomic read-op-write
cycle.

m68k Compare and Swap (cas)
SPARC Compare and Swap (cas)

x86 Compare and Exchange (cmpxchgl)
MIPS Load-Linked/Store Conditional (ll/sc)

(R4000 upwards)
PowerPC Load Word & Reserve/Store Word Conditional

(lwarx/stwcx)
System/161 No hardware synchronization (MIPS R2000/R3000)

Which primitives can we simulate and how?

20
13

-0
5-

19

CS34
More Low-Level Synchronization

Which Processors Have What. . .

Higher-Level Primitives atomic

Higher-Level Primitives

The idea of wanting to do things atomically seems like a good
one. . .

atomic {
yourBalance = yourbalance - 100;
myBalance = myBalance + 100.00;

}

11 / 21

Higher-Level Primitives

The idea of wanting to do things atomically seems like a good
one. . .

atomic {
yourBalance = yourbalance - 100;
myBalance = myBalance + 100.00;

}

20
13

-0
5-

19

CS34
Higher-Level Primitives

atomic

Higher-Level Primitives

Higher-Level Primitives atomic

Higher-Level Primitives

The idea of wanting to do things atomically seems like a good
one. . .

atomic {
yourBalance = yourbalance - 100;
myBalance = myBalance + 100.00;

}

11 / 21

Higher-Level Primitives

The idea of wanting to do things atomically seems like a good
one. . .

atomic {
yourBalance = yourbalance - 100;
myBalance = myBalance + 100.00;

}

20
13

-0
5-

19

CS34
Higher-Level Primitives

atomic

Higher-Level Primitives

Higher-Level Primitives atomic

Recap: Bounded Buffer with Locks/CVs

item_queue buffer; // the buffer itself
struct cv *has_space; // any free slots?
struct cv *has_stuff; // any filled slots?
struct lock *mutex; // protection for the buffer

void producer()
{
item made_item;

for (; ;) {
made_item = make_item();
lock_acquire(mutex);
while (isFull(buffer))

cv_wait(has_space, mutex);
put_item(buffer, made_item);
cv_signal(has_stuff, mutex);
lock_release(mutex);

}
}

void consumer()
{
item usable_item;

for (; ;) {
lock_acquire(mutex);
while (isEmpty(buffer))

cv_wait(has_stuff, mutex);
usable_item = get_item(buffer);
cv_signal(has_space, mutex);
lock_release(mutex);
use_item(usable_item);

}
}

12 / 21

Recap: Bounded Buffer with Locks/CVs

item_queue buffer; // the buffer itself
struct cv *has_space; // any free slots?
struct cv *has_stuff; // any filled slots?
struct lock *mutex; // protection for the buffer

void producer()
{

item made_item;

for (; ;) {
made_item = make_item();
lock_acquire(mutex);
while (isFull(buffer))

cv_wait(has_space, mutex);
put_item(buffer, made_item);
cv_signal(has_stuff, mutex);
lock_release(mutex);

}
}

void consumer()
{

item usable_item;

for (; ;) {
lock_acquire(mutex);
while (isEmpty(buffer))

cv_wait(has_stuff, mutex);
usable_item = get_item(buffer);
cv_signal(has_space, mutex);
lock_release(mutex);
use_item(usable_item);

}
}

20
13

-0
5-

19

CS34
Higher-Level Primitives

atomic

Recap: Bounded Buffer with Locks/CVs

Higher-Level Primitives atomic

Bounded Buffer with atomic

item_queue buffer; // the buffer itself

void producer()
{
item made_item;

for (; ;) {
made_item = make_item();
atomic {
while (isFull(buffer))
;

put_item(buffer, made_item);
}

}
}

void consumer()
{
item usable_item;

for (; ;) {
atomic {

while (isEmpty(buffer))
;

usable_item = get_item(buffer);
}
use_item(usable_item);

}
}

13 / 21

Bounded Buffer with atomic

item_queue buffer; // the buffer itself

void producer()
{

item made_item;

for (; ;) {
made_item = make_item();
atomic {

while (isFull(buffer))
;

put_item(buffer, made_item);
}

}
}

void consumer()
{

item usable_item;

for (; ;) {
atomic {

while (isEmpty(buffer))
;

usable_item = get_item(buffer);
}
use_item(usable_item);

}
}20

13
-0

5-
19

CS34
Higher-Level Primitives

atomic

Bounded Buffer with atomic

The problem with this implementation is it deadlocks because of the
loop inside the atomic block.

Higher-Level Primitives atomic

Bounded Buffer with atomic

item_queue buffer; // the buffer itself

void producer()
{
item made_item;

for (; ;) {
made_item = make_item();
atomic {
while (isFull(buffer))
retry();

put_item(buffer, made_item);
}

}
}

void consumer()
{
item usable_item;

for (; ;) {
atomic {

while (isEmpty(buffer))
retry();

usable_item = get_item(buffer);
}
use_item(usable_item);

}
}

14 / 21

Bounded Buffer with atomic

item_queue buffer; // the buffer itself

void producer()
{

item made_item;

for (; ;) {
made_item = make_item();
atomic {

while (isFull(buffer))
retry();

put_item(buffer, made_item);
}

}
}

void consumer()
{

item usable_item;

for (; ;) {
atomic {

while (isEmpty(buffer))
retry();

usable_item = get_item(buffer);
}
use_item(usable_item);

}
}20

13
-0

5-
19

CS34
Higher-Level Primitives

atomic

Bounded Buffer with atomic

Higher-Level Primitives atomic

Alternative Bounded Buffer with atomic

item_queue buffer; // the buffer itself

void producer()
{
item made_item;

for (; ;) {
made_item = make_item();
atomic (!isFull(buffer)) {

put_item(buffer, made_item);
}

}
}

void consumer()
{
item usable_item;

for (; ;) {
atomic (!isEmpty(buffer)) {

usable_item = get_item(buffer);
}
use_item(usable_item);

}
}

15 / 21

Alternative Bounded Buffer with atomic

item_queue buffer; // the buffer itself

void producer()
{

item made_item;

for (; ;) {
made_item = make_item();
atomic (!isFull(buffer)) {

put_item(buffer, made_item);
}

}
}

void consumer()
{

item usable_item;

for (; ;) {
atomic (!isEmpty(buffer)) {

usable_item = get_item(buffer);
}
use_item(usable_item);

}
}20

13
-0

5-
19

CS34
Higher-Level Primitives

atomic

Alternative Bounded Buffer with atomic

Higher-Level Primitives atomic

Discussion

What’s good/bad/poorly specified?

How is it implemented?

16 / 21

Discussion

What’s good/bad/poorly specified?

How is it implemented?

20
13

-0
5-

19

CS34
Higher-Level Primitives

atomic

Discussion

How is this implemented? (It’s sometimes done as a global lock.)

If you forget atomic in one thread, things break.

Retry isn’t needed if there are no conditionals (but are there
conditionals in get_item?).

Alternative: rollback.

Higher-Level Primitives yield

A Gentler Time

Cooperative multitasking: scheduler runs at thread’s request

Net effect: everything is atomic (except for interrupts)

17 / 21

A Gentler Time

Cooperative multitasking: scheduler runs at thread’s request

Net effect: everything is atomic (except for interrupts)

20
13

-0
5-

19

CS34
Higher-Level Primitives

yield

A Gentler Time

Higher-Level Primitives yield

Bounded Buffer with atomic

item_queue buffer; // the buffer itself

void producer()
{
item made_item;

for (; ;) {
made_item = make_item();
atomic {
while (isFull(buffer))
;

put_item(buffer, made_item);
}

}
}

void consumer()
{
item usable_item;

for (; ;) {
atomic {

while (isEmpty(buffer))
;

usable_item = get_item(buffer);
}
use_item(usable_item);

}
}

18 / 21

Bounded Buffer with atomic

item_queue buffer; // the buffer itself

void producer()
{

item made_item;

for (; ;) {
made_item = make_item();
atomic {

while (isFull(buffer))
;

put_item(buffer, made_item);
}

}
}

void consumer()
{

item usable_item;

for (; ;) {
atomic {

while (isEmpty(buffer))
;

usable_item = get_item(buffer);
}
use_item(usable_item);

}
}20

13
-0

5-
19

CS34
Higher-Level Primitives

yield

Bounded Buffer with atomic

Higher-Level Primitives yield

Bounded Buffer with yield

item_queue buffer; // the buffer itself

void producer()
{
item made_item;

for (; ;) {
made_item = make_item();

while (isFull(buffer))
yield;

put_item(buffer, made_item);
yield;

}
}

void consumer()
{
item usable_item;

for (; ;) {
while (isEmpty(buffer))

yield;
usable_item = get_item(buffer);
yield;
use_item(usable_item);

}
}

19 / 21

Bounded Buffer with yield

item_queue buffer; // the buffer itself

void producer()
{

item made_item;

for (; ;) {
made_item = make_item();

while (isFull(buffer))
yield;

put_item(buffer, made_item);
yield;

}
}

void consumer()
{

item usable_item;

for (; ;) {
while (isEmpty(buffer))

yield;
usable_item = get_item(buffer);
yield;
use_item(usable_item);

}
}20

13
-0

5-
19

CS34
Higher-Level Primitives

yield

Bounded Buffer with yield

Avoiding Locks

Avoiding Locks & Slowness of Synchronization

When don’t we need synchronization?

20 / 21

Avoiding Locks & Slowness of Synchronization

When don’t we need synchronization?

20
13

-0
5-

19

CS34
Avoiding Locks

Avoiding Locks & Slowness of Synchronization

Avoiding Locks

Bernstein’s Conditions

Given two (sub)tasks, P1 and P2, with
I Input sets I1 and I2
I Output sets O1 and O2:

Safe to run in parallel if
I I1 ∩ O2 = ∅
I O1 ∩ I2 = ∅
I O1 ∩ O2 = ∅

If unsafe, we say there is “interference” between the tasks.

21 / 21

Bernstein’s Conditions

Given two (sub)tasks, P1 and P2, with
I Input sets I1 and I2
I Output sets O1 and O2:

Safe to run in parallel if
I I1 ∩ O2 = ∅
I O1 ∩ I2 = ∅
I O1 ∩ O2 = ∅

If unsafe, we say there is “interference” between the tasks.

20
13

-0
5-

19

CS34
Avoiding Locks

Bernstein’s Conditions

A.J. Bernstein, IEEE Transactions on Electronic Computers, October
1966.

	Aside: Attending a Conference
	More Low-Level Synchronization
	Higher-Level Primitives
	atomic
	yield

	Avoiding Locks

