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What is a process?

What /s concurrency?
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User’s View of Processes

A fundamental OS abstraction
But details vary from OS to OS:
Batch system—Jobs
Time-shared systems—User programs or tasks
Common idea: Process = “A program in execution”
Processes have a degree of independence from each other

Possibly only allowed communicate through designated
mechanisms
One errant processes should not affect other unrelated ones
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What makes up a process? (“A process has...”)
In general
On a typical POSIX system
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Components of a Process (Unix) ~ %
A rocesses
"‘o? Processes in Unix
Execution state I/O State g Gomponents of a Frocess (Unx)
Registers File descriptors <
Program counter Working directory
Program status word Root directory
Stack pointer Event Notifications
Scheduling information Signals waiting
Process state Signal mask
Priority Time of next alarm
Class, etc. Other
Memory Process ID
Text area Parent process
Data area Process group
Stack area Controlling terminal
Security/Authentication Info Start time
User ID CPU time

Group ID Children’s CPU time
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Processes under UNIX ~ G534
- Processes
"‘o? Processes in Unix
€2 Processes under UNIX
o
(qV]

Processes:
Create with fork
Exit with exit
Replace “process image” with execve

Multiple processes may be active at any one time (compare w/
uniprogrammed system)
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If there’s fork, should we have join?
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Processes under UNIX

The environment you interact with is made up of processes
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Process Implementation ~
- Processes
= Implementation P TS
2 LProcess Implementation
o
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How does the OS implement the process abstraction?
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Processes Implementation

Process Implementation (cont'd)

The OS needs to maintain a process image for each process:

Process’s address space, containing:

Program code
Program data
Processor stack

Housekeeping information (PCB)
One of most important is process state
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A Two-State Process Model ~ G534
- Processes e -
= States
o L A Two-State Process Model Crumtng o rorning )

Simplest model for processes:
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A Four-State Process Model ~ G534
- Processes [TRRE——
3 States D =G>
Si’ A Four-State Process Model
S <D

More useful model for processes:

Blocked

13/25



Processes States

A Five-State Process Model

Five states can model additional needs of batch systems:

Blocked

Scheduler queues:
Ready queue: Processes ready and waiting to execute.
New queue: Processes waiting to be created
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Generalizing Processes N
- Threads
"‘o? Concepts
0 LGeneraIizing Processes PR ——
o
(9]

Simple view of process is
Address space
Thread of execution

Does the mapping need to be one-to-one?
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Threads Concepts

Possible Mappings

one processl]
one threadO
O

one process]
multiple threadsU
O

multiple processes[]
one thread per process[]
0

multiple processes(]
multiple threads per processl]
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Threads . 0834
- Threads
"‘o? Concepts
) L Threads
o
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Motivation:
Traditional processes: Virtual uniprocessor machine
Multithreaded processes: Virtual multiprocessor machine
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Various reasons why people use threads
Performing foreground and background work
Supporting asynchronous processing
Speeding execution
Organizing programs
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Uses of Threads—Example ~
- Threads
"‘o? Uses
€2 Uses of Threads—Example
Web server process o
AN

¥

Dispatcher thread

Worker thread User

space

Web page cache

Kernel
Kernel space

Network[J
connection

/* Dispatcher Thread =/ /* Worker Thread =*/ \\
for (; 7 ) | for (; 7 ) |
url = get_next_request(); url = wait_for_work();
handoff_work (url); page = look_in_cache (url);
} if (page == NULL)

page = generate_page (url);
send_page (page) ;
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Threads
Uses
Class Exercise
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Can an application implement threads without built-in thread
support in the OS?

If so, what does it need from the from the OS to support threads?
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Model for User Threads ~ G534
- Threads
"‘o? Models
€2 Model for User Threads
5 § $ & R e
. So, maybe we should put the threads in the kernel?
ThreadsO Userl Key
Libraryd Space
- ] S User-level threadd
Kernel 0
Space @ Kernel-level thread
0 O

@l Process[]
P ~ 0

Pure user-levell
O

Class Exercise
What are the pros and cons of this approach?
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Model for User Threads ~ G534
- Threads
"‘OI’ Models
€2 Model for User Threads
§ 5 8
. So, maybe we should put the threads in the kernel?
ThreadsO Userl Key
Libraryd Space
- ] S User-level threadd
Kernel 0
Space @ Kernel-level thread
O

O
@l Process[]
P ~ 0

Pure user-levell
O

No kernel overhead for thread library calls

Own scheduler = Application-specific scheduling policy?
I/O issues

Can'’t (easily) take advantage of multiprocessing
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Model for Kernel-Level Threads
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o
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Pure kernel-levelO
O

Class Exercise
What are the pros and cons of this approach?
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Model for Kernel-Level Threads

Pure kernel-levelO
O

Now we have kernel overheads:
Kernel data structures
Mode switch to kernel

Key:
5 User-level threadO

]
@ Kernel-level thread

]
Gl Processl
afiu
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Hybrid Thread Schemes n G534
- Threads
"‘OI) Models o'o ohal
€2 Hybrid Thread Schemes ¢ ¢
S 28C
Threads Userl
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Kernel Key:
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5 5 <> 0 S User-level thread
O
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]
P P Gl Processl]
7 O
Combinedd
O

Class Exercise
What are the pros and cons of this approach?
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Traditional vs. Multithreaded Processes S
"‘OI’ Models
5‘;_) Traditional vs. Multithreaded Processes
Single-Threaded[ &
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Threads Models

Traditional vs. Multithreaded Processes G
- reads
"‘o? Models
. . €2 Traditional vs. Multithreaded Processes
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Class Question
But what'’s per-process and what'’s per-thread?

24/25



Threads Design

Per-Process vs. Per-Thread— You Decide. . . -
"‘OI) Design
Execution state /O State g LPer—Process vs. Per-Thread— You Decide. . .
(9]
Registers File descriptors
Program counter Working directory
Program status word Root directory
Stack pointer Event Notifications
Scheduling information Signals waiting
Process state Signal mask
Priority Time of next alarm
Class, etc. Other
Memory Process ID
Text area Parent process
Data area Process group
Stack area Controlling terminal
Security/Authentication Info Start time
User ID CPU time

Group ID Children’s CPU time
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