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What is concurrency?
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Processes

User’s View of Processes

A fundamental OS abstraction
I But details vary from OS to OS:

I Batch system—Jobs
I Time-shared systems—User programs or tasks

I Common idea: Process = “A program in execution”
I Processes have a degree of independence from each other

I Possibly only allowed communicate through designated
mechanisms

I One errant processes should not affect other unrelated ones
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Class Exercise

What makes up a process? (“A process has. . . ”)
I In general
I On a typical POSIX system
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Processes Processes in Unix

Components of a Process (Unix)

I Execution state
I Registers
I Program counter
I Program status word
I Stack pointer

I Scheduling information
I Process state
I Priority
I Class, etc.

I Memory
I Text area
I Data area
I Stack area

I Security/Authentication Info
I User ID
I Group ID

I I/O State
I File descriptors
I Working directory
I Root directory

I Event Notifications
I Signals waiting
I Signal mask
I Time of next alarm

I Other
I Process ID
I Parent process
I Process group
I Controlling terminal
I Start time
I CPU time
I Children’s CPU time
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Processes Processes in Unix

Processes under UNIX

Processes:
I Create with fork

I Exit with exit

I Replace “process image” with execve

Multiple processes may be active at any one time (compare w/
uniprogrammed system)
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Processes Processes in Unix

Class Question

If there’s fork, should we have join?
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Processes Processes in Unix

Processes under UNIX

The environment you interact with is made up of processes

root

init

mach_init

syslogd

kextd

configd

diskarbitrationd

notifyd netinfod

update

dynamic_pager

SystemStarter

TabletDriverRelauncher

KernelEventAgent

nobody

mDNSResponder

cron

coreservicesd

distnoted

lookupd

crashreporterd

SecurityServer

cupsd

loginwindow

nfsiod TabletDriver

rpc.lockd

xinetd

ntpdautomount

automount

ATSServer

WindowServer

DirectoryService

melissapbs

Dock

SystemUIServer

Finder

System

MouseWorks

UniversalAccess

Safari

Terminal

TeXShop

AppleSpell

Keynote

Preview

TextEdit

p1

login

-tcsh

man

sh

sh

less

p2

login

-tcsh

ssh

p3

login -tcsh

ps

p4

login -tcsh

p5

login

-tcsh
p6

login

-tcsh
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Process Implementation

How does the OS implement the process abstraction?
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Processes Implementation

Process Implementation (cont’d)

The OS needs to maintain a process image for each process:
I Process’s address space, containing:

I Program code
I Program data
I Processor stack

I Housekeeping information (PCB)
I One of most important is process state
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Processes States

A Two-State Process Model

Simplest model for processes:

Not 
Running Running
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Processes States

A Four-State Process Model

More useful model for processes:

Ready Running

Blocked

Finished
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Processes States

A Five-State Process Model

Five states can model additional needs of batch systems:

Ready Running

Blocked

FinishedNew

Scheduler queues:
I Ready queue: Processes ready and waiting to execute.
I New queue: Processes waiting to be created
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Threads Concepts

Generalizing Processes

Simple view of process is
Address space

+ Thread of execution

Does the mapping need to be one-to-one?
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Possible Mappings

one process�
one thread�
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Threads Concepts

Threads

Motivation:
I Traditional processes: Virtual uniprocessor machine
I Multithreaded processes: Virtual multiprocessor machine
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Threads Uses

Uses of Threads

Various reasons why people use threads
I Performing foreground and background work
I Supporting asynchronous processing
I Speeding execution
I Organizing programs

18 / 25

Uses of Threads

Various reasons why people use threads
I Performing foreground and background work
I Supporting asynchronous processing
I Speeding execution
I Organizing programs

20
13

-0
5-

17

CS34
Threads

Uses
Uses of Threads



Threads Uses

Uses of Threads—Example

Dispatcher thread

Worker thread

Web page cache

Kernel

Network�
connection

Web server process

User�
space

Kernel�
space

/* Dispatcher Thread */
for ( ; ; ) {
url = get_next_request();
handoff_work(url);

}

/* Worker Thread */ \\
for ( ; ; ) {
url = wait_for_work();
page = look_in_cache(url);
if (page == NULL)
page = generate_page(url);

send_page(page);
}
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Threads Uses

Class Exercise

Can an application implement threads without built-in thread
support in the OS?

If so, what does it need from the from the OS to support threads?
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Threads Models

Model for User Threads

P�
�

User�
Space�

�

Threads�
Library�

�
Kernel
Space�

�

Pure user-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?
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Threads Models

Model for Kernel-Level Threads
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Threads Models

Hybrid Thread Schemes
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Threads Models

Traditional vs. Multithreaded Processes
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Threads Design

Per-Process vs. Per-Thread—You Decide. . .

I Execution state
I Registers
I Program counter
I Program status word
I Stack pointer

I Scheduling information
I Process state
I Priority
I Class, etc.

I Memory
I Text area
I Data area
I Stack area

I Security/Authentication Info
I User ID
I Group ID

I I/O State
I File descriptors
I Working directory
I Root directory

I Event Notifications
I Signals waiting
I Signal mask
I Time of next alarm

I Other
I Process ID
I Parent process
I Process group
I Controlling terminal
I Start time
I CPU time
I Children’s CPU time
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