
CS 134:
Operating Systems

Processes

1 / 25

CS 134:
Operating Systems

Processes

20
13

-0
5-

17

CS34

Overview

Processes
Processes in Unix
Implementation
States

Threads
Concepts
Uses
Models
Design

2 / 25

Overview

Processes
Processes in Unix
Implementation
States

Threads
Concepts
Uses
Models
Design20

13
-0

5-
17

CS34

Overview

Processes

Processes & Concurrency

What is a process?

What is concurrency?

3 / 25

Processes & Concurrency

What is a process?

What is concurrency?

20
13

-0
5-

17

CS34
Processes

Processes & Concurrency

Processes

User’s View of Processes

A fundamental OS abstraction
I But details vary from OS to OS:

I Batch system—Jobs
I Time-shared systems—User programs or tasks

I Common idea: Process = “A program in execution”
I Processes have a degree of independence from each other

I Possibly only allowed communicate through designated
mechanisms

I One errant processes should not affect other unrelated ones

4 / 25

User’s View of Processes

A fundamental OS abstraction
I But details vary from OS to OS:

I Batch system—Jobs
I Time-shared systems—User programs or tasks

I Common idea: Process = “A program in execution”
I Processes have a degree of independence from each other

I Possibly only allowed communicate through designated
mechanisms

I One errant processes should not affect other unrelated ones

20
13

-0
5-

17

CS34
Processes

User’s View of Processes

Processes

Class Exercise

What makes up a process? (“A process has. . . ”)
I In general
I On a typical POSIX system

5 / 25

Class Exercise

What makes up a process? (“A process has. . . ”)
I In general
I On a typical POSIX system

20
13

-0
5-

17

CS34
Processes

Class Exercise

Processes Processes in Unix

Components of a Process (Unix)

I Execution state
I Registers
I Program counter
I Program status word
I Stack pointer

I Scheduling information
I Process state
I Priority
I Class, etc.

I Memory
I Text area
I Data area
I Stack area

I Security/Authentication Info
I User ID
I Group ID

I I/O State
I File descriptors
I Working directory
I Root directory

I Event Notifications
I Signals waiting
I Signal mask
I Time of next alarm

I Other
I Process ID
I Parent process
I Process group
I Controlling terminal
I Start time
I CPU time
I Children’s CPU time

6 / 25

Components of a Process (Unix)

I Execution state
I Registers
I Program counter
I Program status word
I Stack pointer

I Scheduling information
I Process state
I Priority
I Class, etc.

I Memory
I Text area
I Data area
I Stack area

I Security/Authentication Info
I User ID
I Group ID

I I/O State
I File descriptors
I Working directory
I Root directory

I Event Notifications
I Signals waiting
I Signal mask
I Time of next alarm

I Other
I Process ID
I Parent process
I Process group
I Controlling terminal
I Start time
I CPU time
I Children’s CPU time

20
13

-0
5-

17

CS34
Processes

Processes in Unix
Components of a Process (Unix)

Processes Processes in Unix

Processes under UNIX

Processes:
I Create with fork

I Exit with exit

I Replace “process image” with execve

Multiple processes may be active at any one time (compare w/
uniprogrammed system)

7 / 25

Processes under UNIX

Processes:
I Create with fork

I Exit with exit

I Replace “process image” with execve

Multiple processes may be active at any one time (compare w/
uniprogrammed system)

20
13

-0
5-

17

CS34
Processes

Processes in Unix
Processes under UNIX

Processes Processes in Unix

Class Question

If there’s fork, should we have join?

8 / 25

Class Question

If there’s fork, should we have join?

20
13

-0
5-

17

CS34
Processes

Processes in Unix
Class Question

Processes Processes in Unix

Processes under UNIX

The environment you interact with is made up of processes

root

init

mach_init

syslogd

kextd

configd

diskarbitrationd

notifyd netinfod

update

dynamic_pager

SystemStarter

TabletDriverRelauncher

KernelEventAgent

nobody

mDNSResponder

cron

coreservicesd

distnoted

lookupd

crashreporterd

SecurityServer

cupsd

loginwindow

nfsiod TabletDriver

rpc.lockd

xinetd

ntpdautomount

automount

ATSServer

WindowServer

DirectoryService

melissapbs

Dock

SystemUIServer

Finder

System

MouseWorks

UniversalAccess

Safari

Terminal

TeXShop

AppleSpell

Keynote

Preview

TextEdit

p1

login

-tcsh

man

sh

sh

less

p2

login

-tcsh

ssh

p3

login -tcsh

ps

p4

login -tcsh

p5

login

-tcsh
p6

login

-tcsh

9 / 25

Processes under UNIX

The environment you interact with is made up of processes

root

init

mach_init

syslogd

kextd

configd

diskarbitrationd

notifyd netinfod

update

dynamic_pager

SystemStarter

TabletDriverRelauncher

KernelEventAgent

nobody

mDNSResponder

cron

coreservicesd

distnoted

lookupd

crashreporterd

SecurityServer

cupsd

loginwindow

nfsiod TabletDriver

rpc.lockd

xinetd

ntpdautomount

automount

ATSServer

WindowServer

DirectoryService

melissapbs

Dock

SystemUIServer

Finder

System

MouseWorks

UniversalAccess

Safari

Terminal

TeXShop

AppleSpell

Keynote

Preview

TextEdit

p1

login

-tcsh

man

sh

sh

less

p2

login

-tcsh

ssh

p3

login -tcsh

ps

p4

login -tcsh

p5

login

-tcsh
p6

login

-tcsh20
13

-0
5-

17

CS34
Processes

Processes in Unix
Processes under UNIX

Processes Implementation

Process Implementation

How does the OS implement the process abstraction?

10 / 25

Process Implementation

How does the OS implement the process abstraction?

20
13

-0
5-

17

CS34
Processes

Implementation

Process Implementation

Processes Implementation

Process Implementation (cont’d)

The OS needs to maintain a process image for each process:
I Process’s address space, containing:

I Program code
I Program data
I Processor stack

I Housekeeping information (PCB)
I One of most important is process state

11 / 25

Process Implementation (cont’d)

The OS needs to maintain a process image for each process:
I Process’s address space, containing:

I Program code
I Program data
I Processor stack

I Housekeeping information (PCB)
I One of most important is process state

20
13

-0
5-

17

CS34
Processes

Implementation

Process Implementation (cont’d)

Processes States

A Two-State Process Model

Simplest model for processes:

Not
Running Running

12 / 25

A Two-State Process Model

Simplest model for processes:

Not
Running Running

20
13

-0
5-

17

CS34
Processes

States
A Two-State Process Model

Processes States

A Four-State Process Model

More useful model for processes:

Ready Running

Blocked

Finished

13 / 25

A Four-State Process Model

More useful model for processes:

Ready Running

Blocked

Finished

20
13

-0
5-

17

CS34
Processes

States
A Four-State Process Model

Processes States

A Five-State Process Model

Five states can model additional needs of batch systems:

Ready Running

Blocked

FinishedNew

Scheduler queues:
I Ready queue: Processes ready and waiting to execute.
I New queue: Processes waiting to be created

14 / 25

A Five-State Process Model

Five states can model additional needs of batch systems:

Ready Running

Blocked

FinishedNew

Scheduler queues:
I Ready queue: Processes ready and waiting to execute.
I New queue: Processes waiting to be created20

13
-0

5-
17

CS34
Processes

States
A Five-State Process Model

Threads Concepts

Generalizing Processes

Simple view of process is
Address space

+ Thread of execution

Does the mapping need to be one-to-one?

15 / 25

Generalizing Processes

Simple view of process is
Address space

+ Thread of execution

Does the mapping need to be one-to-one?

20
13

-0
5-

17

CS34
Threads

Concepts

Generalizing Processes

Threads Concepts

Possible Mappings

one process�
one thread�

�

one process�
multiple threads�

�

multiple processes�
one thread per process�

�

multiple processes�
multiple threads per process�

�

16 / 25

Possible Mappings

one process�
one thread�

�

one process�
multiple threads�

�

multiple processes�
one thread per process�

�

multiple processes�
multiple threads per process�

�

20
13

-0
5-

17

CS34
Threads

Concepts

Possible Mappings

Threads Concepts

Threads

Motivation:
I Traditional processes: Virtual uniprocessor machine
I Multithreaded processes: Virtual multiprocessor machine

17 / 25

Threads

Motivation:
I Traditional processes: Virtual uniprocessor machine
I Multithreaded processes: Virtual multiprocessor machine

20
13

-0
5-

17

CS34
Threads

Concepts

Threads

Threads Uses

Uses of Threads

Various reasons why people use threads
I Performing foreground and background work
I Supporting asynchronous processing
I Speeding execution
I Organizing programs

18 / 25

Uses of Threads

Various reasons why people use threads
I Performing foreground and background work
I Supporting asynchronous processing
I Speeding execution
I Organizing programs

20
13

-0
5-

17

CS34
Threads

Uses
Uses of Threads

Threads Uses

Uses of Threads—Example

Dispatcher thread

Worker thread

Web page cache

Kernel

Network�
connection

Web server process

User�
space

Kernel�
space

/* Dispatcher Thread */
for (; ;) {
url = get_next_request();
handoff_work(url);

}

/* Worker Thread */ \\
for (; ;) {
url = wait_for_work();
page = look_in_cache(url);
if (page == NULL)
page = generate_page(url);

send_page(page);
}

19 / 25

Uses of Threads—Example

Dispatcher thread

Worker thread

Web page cache

Kernel

Network�
connection

Web server process

User�
space

Kernel�
space

/* Dispatcher Thread */
for (; ;) {
url = get_next_request();
handoff_work(url);

}

/* Worker Thread */ \\
for (; ;) {

url = wait_for_work();
page = look_in_cache(url);
if (page == NULL)
page = generate_page(url);

send_page(page);
}

20
13

-0
5-

17

CS34
Threads

Uses
Uses of Threads—Example

Threads Uses

Class Exercise

Can an application implement threads without built-in thread
support in the OS?

If so, what does it need from the from the OS to support threads?

20 / 25

Class Exercise

Can an application implement threads without built-in thread
support in the OS?

If so, what does it need from the from the OS to support threads?

20
13

-0
5-

17

CS34
Threads

Uses
Class Exercise

Threads Models

Model for User Threads

P�
�

User�
Space�

�

Threads�
Library�

�
Kernel
Space�

�

Pure user-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

21 / 25

Model for User Threads

P�
�

User�
Space�

�

Threads�
Library�

�
Kernel
Space�

�

Pure user-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

20
13

-0
5-

17

CS34
Threads

Models
Model for User Threads

So, maybe we should put the threads in the kernel?

Threads Models

Model for User Threads

P�
�

User�
Space�

�

Threads�
Library�

�
Kernel
Space�

�

Pure user-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

+ No kernel overhead for thread library calls
+ Own scheduler = Application-specific scheduling policy?
− I/O issues
− Can’t (easily) take advantage of multiprocessing

21 / 25

Model for User Threads

P�
�

User�
Space�

�

Threads�
Library�

�
Kernel
Space�

�

Pure user-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

+ No kernel overhead for thread library calls
+ Own scheduler = Application-specific scheduling policy?
− I/O issues
− Can’t (easily) take advantage of multiprocessing

20
13

-0
5-

17

CS34
Threads

Models
Model for User Threads

So, maybe we should put the threads in the kernel?

Threads Models

Model for Kernel-Level Threads

P�
�

User�
Space�

�
Kernel
Space�

�

Pure kernel-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

22 / 25

Model for Kernel-Level Threads

P�
�

User�
Space�

�
Kernel
Space�

�

Pure kernel-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

20
13

-0
5-

17

CS34
Threads

Models
Model for Kernel-Level Threads

Threads Models

Model for Kernel-Level Threads

P�
�

User�
Space�

�
Kernel
Space�

�

Pure kernel-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Now we have kernel overheads:
I Kernel data structures
I Mode switch to kernel

22 / 25

Model for Kernel-Level Threads

P�
�

User�
Space�

�
Kernel
Space�

�

Pure kernel-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Now we have kernel overheads:
I Kernel data structures
I Mode switch to kernel

20
13

-0
5-

17

CS34
Threads

Models
Model for Kernel-Level Threads

Threads Models

Hybrid Thread Schemes

P�
�

P�
�

User�
Space�
�

Threads�
Library�

�
Kernel
Space�
�

Combined�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

23 / 25

Hybrid Thread Schemes

P�
�

P�
�

User�
Space�
�

Threads�
Library�

�
Kernel
Space�
�

Combined�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

20
13

-0
5-

17

CS34
Threads

Models
Hybrid Thread Schemes

Threads Models

Traditional vs. Multithreaded Processes

Single-Threaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

Multithreaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

Thread�
Control�
Block�

�

Thread�
�

Thread�
�

Thread�
�Thread�

Control�
Block�

�

Thread�
Control�
Block�

�

Class Question
But what’s per-process and what’s per-thread?

24 / 25

Traditional vs. Multithreaded Processes

Single-Threaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

Multithreaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

Thread�
Control�
Block�

�

Thread�
�

Thread�
�

Thread�
�Thread�

Control�
Block�

�

Thread�
Control�
Block�

�

Class Question
But what’s per-process and what’s per-thread?

20
13

-0
5-

17

CS34
Threads

Models
Traditional vs. Multithreaded Processes

Threads Models

Traditional vs. Multithreaded Processes

Single-Threaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

Multithreaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

Thread�
Control�
Block�

�

Thread�
�

Thread�
�

Thread�
�Thread�

Control�
Block�

�

Thread�
Control�
Block�

�

Class Question
But what’s per-process and what’s per-thread?

24 / 25

Traditional vs. Multithreaded Processes

Single-Threaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

Multithreaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

Thread�
Control�
Block�

�

Thread�
�

Thread�
�

Thread�
�Thread�

Control�
Block�

�

Thread�
Control�
Block�

�

Class Question
But what’s per-process and what’s per-thread?

20
13

-0
5-

17

CS34
Threads

Models
Traditional vs. Multithreaded Processes

Threads Design

Per-Process vs. Per-Thread—You Decide. . .

I Execution state
I Registers
I Program counter
I Program status word
I Stack pointer

I Scheduling information
I Process state
I Priority
I Class, etc.

I Memory
I Text area
I Data area
I Stack area

I Security/Authentication Info
I User ID
I Group ID

I I/O State
I File descriptors
I Working directory
I Root directory

I Event Notifications
I Signals waiting
I Signal mask
I Time of next alarm

I Other
I Process ID
I Parent process
I Process group
I Controlling terminal
I Start time
I CPU time
I Children’s CPU time

25 / 25

Per-Process vs. Per-Thread—You Decide. . .

I Execution state
I Registers
I Program counter
I Program status word
I Stack pointer

I Scheduling information
I Process state
I Priority
I Class, etc.

I Memory
I Text area
I Data area
I Stack area

I Security/Authentication Info
I User ID
I Group ID

I I/O State
I File descriptors
I Working directory
I Root directory

I Event Notifications
I Signals waiting
I Signal mask
I Time of next alarm

I Other
I Process ID
I Parent process
I Process group
I Controlling terminal
I Start time
I CPU time
I Children’s CPU time

20
13

-0
5-

17

CS34
Threads

Design

Per-Process vs. Per-Thread—You Decide. . .

	Processes
	Processes in Unix
	Implementation
	States

	Threads
	Concepts
	Uses
	Models
	Design

