CS34

2013-05-17

CS 134:

Operating Systems

Processes

CS34

Overview

mmmmmmmmmmmmmm

- Overview

2013-05-17

Processes in Unix
Implementation
States

Concepts
Uses
Models
Design

Processes

CS34
Processes

Processes & Concurrency

LProcesses & Concurrency

2013-05-17

What is a process?

What /s concurrency?

Processes

User’s View of Processes

A fundamental OS abstraction
But details vary from OS to OS:
Batch system—Jobs
Time-shared systems—User programs or tasks
Common idea: Process = “A program in execution”
Processes have a degree of independence from each other

Possibly only allowed communicate through designated
mechanisms
One errant processes should not affect other unrelated ones

2013-05-17

CS34
Processes

LUser’s View of Processes

Processes

CS34
Processes

Class Exercise

LCIass Exercise

2013-05-17

What makes up a process? (“A process has...”)
In general
On a typical POSIX system

Processes Processes in Unix

Components of a Process (Unix) ~ %
A rocesses
"‘o? Processes in Unix
Execution state I/O State g Gomponents of a Frocess (Unx)
Registers File descriptors <
Program counter Working directory
Program status word Root directory
Stack pointer Event Notifications
Scheduling information Signals waiting
Process state Signal mask
Priority Time of next alarm
Class, etc. Other
Memory Process ID
Text area Parent process
Data area Process group
Stack area Controlling terminal
Security/Authentication Info Start time
User ID CPU time

Group ID Children’s CPU time

Processes Processes in Unix

Processes under UNIX ~ G534
- Processes
"‘o? Processes in Unix
€2 Processes under UNIX
o
(qV]

Processes:
Create with fork
Exit with exit
Replace “process image” with execve

Multiple processes may be active at any one time (compare w/
uniprogrammed system)

Processes Processes in Unix

CS34
Processes
Processes in Unix
Class Question

Class Question

I thores coxk, should wo have 10107

2013-05-17

If there’s fork, should we have join?

Processes Processes in Unix

Processes under UNIX

The environment you interact with is made up of processes

nobody

lookupd mDNSResponder p2
p1
distnoted

COWED
SystemUIServer @ @
AppleSpell
@ KernelEventAgent
diskarbitrationd @
(Sarar> /(Finder DD,

crashrepor\erd p4
SystemStarter melissa @
Iogmwmdow
DY

CWindowServer .—>
SecumyServer
\ TabletDriverRelauncher ‘

dynamic_pager @ ‘
TabletDriver p3

@
— -
Cooiyd Crtinfod .

CS34

N~
= Processes
3 Processes in Unix

:
€2 Processes under UNIX
o
(qV]

25

Processes Implementation

Process Implementation ~
- Processes
= Implementation P TS
2 LProcess Implementation
o
(qV]

How does the OS implement the process abstraction?

10/25

Processes Implementation

Process Implementation (cont'd)

The OS needs to maintain a process image for each process:

Process’s address space, containing:

Program code
Program data
Processor stack

Housekeeping information (PCB)
One of most important is process state

11/25

2013-05-17

CS34
Processes
Implementation
- Process Implementation (contd)

Processes States

A Two-State Process Model ~ G534
- Processes e -
= States
o L A Two-State Process Model Crumtng o rorning)

Simplest model for processes:

12/25

Processes States

A Four-State Process Model ~ G534
- Processes [TRRE——
3 States D =G>
Si’ A Four-State Process Model
S <D

More useful model for processes:

Blocked

13/25

Processes States

A Five-State Process Model

Five states can model additional needs of batch systems:

Blocked

Scheduler queues:
Ready queue: Processes ready and waiting to execute.
New queue: Processes waiting to be created

14/25

2013-05-17

CS34
Processes
States
A Five-State Process Model

Threads Concepts

Generalizing Processes N
- Threads
"‘o? Concepts
0 LGeneraIizing Processes PR ——
o
(9]

Simple view of process is
Address space
Thread of execution

Does the mapping need to be one-to-one?

15/25

Threads Concepts

Possible Mappings

one processl]
one threadO
O

one process]
multiple threadsU
O

multiple processes[]
one thread per process[]
0

multiple processes(]
multiple threads per processl]

16/25

2013-05-17

CS34
Threads
Concepts
LPossibIe Mappings

Possible Mappings

Threads Concepts

Threads . 0834
- Threads
"‘o? Concepts
) L Threads
o
(qV]

Motivation:
Traditional processes: Virtual uniprocessor machine
Multithreaded processes: Virtual multiprocessor machine

17/25

Threads Uses

CS34
Threads
Uses
Uses of Threads

Uses of Threads

2013-05-17

Various reasons why people use threads
Performing foreground and background work
Supporting asynchronous processing
Speeding execution
Organizing programs

18/25

Threads Uses

Uses of Threads—Example ~
- Threads
"‘o? Uses
€2 Uses of Threads—Example
Web server process o
AN

¥

Dispatcher thread

Worker thread User

space

Web page cache

Kernel
Kernel space

Network[J
connection

/* Dispatcher Thread =/ /* Worker Thread =*/ \\
for (; 7) | for (; 7) |
url = get_next_request(); url = wait_for_work();
handoff_work (url); page = look_in_cache (url);
} if (page == NULL)

page = generate_page (url);
send_page (page) ;

19/25

Threads Uses

Class Exercise s34

Threads
Uses
Class Exercise

2013-05-17

Can an application implement threads without built-in thread
support in the OS?

If so, what does it need from the from the OS to support threads?

20/25

Threads Models

Model for User Threads ~ G534
- Threads
"‘o? Models
€2 Model for User Threads
5 § $ & R e
. So, maybe we should put the threads in the kernel?
ThreadsO Userl Key
Libraryd Space
-] S User-level threadd
Kernel 0
Space @ Kernel-level thread
0 O

@l Process[]
P ~ 0

Pure user-levell
O

Class Exercise
What are the pros and cons of this approach?

21/25

Threads Models

Model for User Threads ~ G534
- Threads
"‘OI’ Models
€2 Model for User Threads
§ 5 8
. So, maybe we should put the threads in the kernel?
ThreadsO Userl Key
Libraryd Space
-] S User-level threadd
Kernel 0
Space @ Kernel-level thread
O

O
@l Process[]
P ~ 0

Pure user-levell
O

No kernel overhead for thread library calls

Own scheduler = Application-specific scheduling policy?
I/O issues

Can'’t (easily) take advantage of multiprocessing

21/25

Threads Models

Model for Kernel-Level Threads

UserC

Space Key:

o
Kemel ¢ User-level threadD
Space

" " " . @Eemel—levelthread

]
Gl Processl
afiu
G i

Pure kernel-levelO
O

Class Exercise
What are the pros and cons of this approach?

22/25

2013-05-17

CS34
Threads
Models
Model for Kernel-Level Threads

Threads Models

Model for Kernel-Level Threads

Pure kernel-levelO
O

Now we have kernel overheads:
Kernel data structures
Mode switch to kernel

Key:
5 User-level threadO

]
@ Kernel-level thread

]
Gl Processl
afiu

22/25

2013-05-17

CS34
Threads
Models
Model for Kernel-Level Threads

Threads Models

Hybrid Thread Schemes n G534
- Threads
"‘OI) Models o'o ohal
€2 Hybrid Thread Schemes ¢ ¢
S 28C
Threads Userl
Library Space
) |}
Kernel Key:
Space
5 5 <> 0 S User-level thread
O
@ Kernel-level thread
]
P P Gl Processl]
7 O
Combinedd
O

Class Exercise
What are the pros and cons of this approach?

23/25

Threads Models

Traditional vs. Multithreaded Processes S
"‘OI’ Models
5‘;_) Traditional vs. Multithreaded Processes
Single-Threaded[&

Process Modell

|

Process] | Userl
Control0)| | Stackl

BlockO |

]

Userd Kernell]
Address[] Stack(]

Spacel]

]

24/25

Threads Models

Traditional vs. Multithreaded Processes G
- reads
"‘o? Models
. . €2 Traditional vs. Multithreaded Processes
Single-ThreadedO MultithreadedO S s venton
Process Modell Process Modell] P
0 _ ThreadD []_ ThreadD — _ Threadd
| Threadd]! [Threddd]! [Thréadd)!
UserQd 1| Control}i 1| ControlTji 1| ControlC]i
ProcessL} Stack] iL_Blockn|! || Blocko|! || Blockn]!
Control o i O 1 O 1 0o
I I
BlockO i - - :
U Process] 1| UserO|l i userd|! i userOl!
| Stack! !| Stackl' !| Stack]!
Userd Kernell ControlJ) Saé: » Saé: = SaDc !
Address[] | Stack[Bk’jku ! ! | !
Spacel O : = |]
] Userd | 1 Kernel[: | Kernel[: | Kemel[:
AddressC] i| Stack[]! || Stackf]! || Stackr]!
Spacel| | o | a ! o
I 1 I I
| L=—==—== 4 L===== . L===—== 4

Class Question
But what'’s per-process and what'’s per-thread?

24/25

Threads Design

Per-Process vs. Per-Thread— You Decide. . . -
"‘OI) Design
Execution state /O State g LPer—Process vs. Per-Thread— You Decide. . .
(9]
Registers File descriptors
Program counter Working directory
Program status word Root directory
Stack pointer Event Notifications
Scheduling information Signals waiting
Process state Signal mask
Priority Time of next alarm
Class, etc. Other
Memory Process ID
Text area Parent process
Data area Process group
Stack area Controlling terminal
Security/Authentication Info Start time
User ID CPU time

Group ID Children’s CPU time

25/25

	Processes
	Processes in Unix
	Implementation
	States

	Threads
	Concepts
	Uses
	Models
	Design

