
CS 134:
Operating Systems

System Calls

1 / 20

CS 134:
Operating Systems

System Calls

20
13

-0
5-

19

CS34

Overview

The Processor Status Word

Protection
Types of Protection
Memory Protection

System Calls

Next Assignment

2 / 20

Overview

The Processor Status Word

Protection
Types of Protection
Memory Protection

System Calls

Next Assignment20
13

-0
5-

19

CS34

Overview

The Processor Status Word

Processor Status Words

Every processor, even a microcontroller, has a status word (often
called PSW). Common contents are:

I Protection control
I Interrupt control
I Single-step flag
I Condition codes

3 / 20

Processor Status Words

Every processor, even a microcontroller, has a status word (often
called PSW). Common contents are:

I Protection control
I Interrupt control
I Single-step flag
I Condition codes

20
13

-0
5-

19

CS34
The Processor Status Word

Processor Status Words

The Processor Status Word

MIPS Status

MIPS keeps a STATUS word in control register 12:
I Various cache-control bits
I “Boot flag” for booting from ROM
I Five hardware interrupt enables
I Two software interrupt enables
I Three bit pairs called old/previous/current:

I Kernel/user mode
I Global interrupt enable

4 / 20

MIPS Status

MIPS keeps a STATUS word in control register 12:
I Various cache-control bits
I “Boot flag” for booting from ROM
I Five hardware interrupt enables
I Two software interrupt enables
I Three bit pairs called old/previous/current:

I Kernel/user mode
I Global interrupt enable

20
13

-0
5-

19

CS34
The Processor Status Word

MIPS Status

The Processor Status Word

How MIPS Interrupts Work

MIPS works like most machines:
I Finish currently executing instructions
I Drain pipeline
I Disable interrupts
I Switch to kernel mode
I Start execution at known location

Minor MIPS detail: in STATUS, old/previous/current is shifted left
and current is set to 0 (kernel mode, no interrupts)

5 / 20

How MIPS Interrupts Work

MIPS works like most machines:
I Finish currently executing instructions
I Drain pipeline
I Disable interrupts
I Switch to kernel mode
I Start execution at known location

Minor MIPS detail: in STATUS, old/previous/current is shifted left
and current is set to 0 (kernel mode, no interrupts)

20
13

-0
5-

19

CS34
The Processor Status Word

How MIPS Interrupts Work

Protection

Protection

Processes need to be insulated from each other.

What needs protection?

What do we want from hardware to provide protection?

6 / 20

Protection

Processes need to be insulated from each other.

What needs protection?

What do we want from hardware to provide protection?

20
13

-0
5-

19

CS34
Protection

Protection

Stop here to discuss.

Protection

User & Kernel Mode

Two states:
I User mode—Processes
I Kernel mode—OS code to support processes

The hardware usually knows what state we’re in. (Why?)

What happens when we change state?

7 / 20

User & Kernel Mode

Two states:
I User mode—Processes
I Kernel mode—OS code to support processes

The hardware usually knows what state we’re in. (Why?)

What happens when we change state?

20
13

-0
5-

19

CS34
Protection

User & Kernel Mode

Protection Types of Protection

CPU Protection

If a program hangs, it shouldn’t hang the machine

Use a timer interrupt!
I Decremented every clock tick
I Zero⇒ Interrupt

8 / 20

CPU Protection

If a program hangs, it shouldn’t hang the machine

Use a timer interrupt!
I Decremented every clock tick
I Zero⇒ Interrupt

20
13

-0
5-

19

CS34
Protection

Types of Protection

CPU Protection

Protection Types of Protection

I/O Protection

Protect I/O devices from errant programs

Solution: I/O Protection
I Only kernel may interact with I/O hardware
I I/O instructions are privileged
I Interrupt jumps to kernel, sets kernel mode

9 / 20

I/O Protection

Protect I/O devices from errant programs

Solution: I/O Protection
I Only kernel may interact with I/O hardware
I I/O instructions are privileged
I Interrupt jumps to kernel, sets kernel mode

20
13

-0
5-

19

CS34
Protection

Types of Protection

I/O Protection

Protection Memory Protection

Memory Protection

Protecting I/O devices also requires that we protect
I Interrupt vector
I Interrupt service routines (and rest of kernel)
I Operating system data structures

from modification by errant or malicious programs

Solution: Memory Protection

Class Exercise
What’s the simplest solution we could ask from hardware makers
to solve problem of ensuring that a program doesn’t access
outside its own chunk of physical memory?

10 / 20

Memory Protection

Protecting I/O devices also requires that we protect
I Interrupt vector
I Interrupt service routines (and rest of kernel)
I Operating system data structures

from modification by errant or malicious programs

Solution: Memory Protection

Class Exercise
What’s the simplest solution we could ask from hardware makers
to solve problem of ensuring that a program doesn’t access
outside its own chunk of physical memory?20

13
-0

5-
19

CS34
Protection

Memory Protection

Memory Protection

Here, we’re looking for base/limit registers.

Protection Memory Protection

Simple Memory Protection

Processor

base base + limit

address ≥ <
Memory

TRAP

I Use two special registers to check address legality
I Base register—smallest legal physical memory address
I Limit register—size of the range

11 / 20

Simple Memory Protection

Processor

base base + limit

address ≥ <
Memory

TRAP

I Use two special registers to check address legality
I Base register—smallest legal physical memory address
I Limit register—size of the range

20
13

-0
5-

19

CS34
Protection

Memory Protection

Simple Memory Protection

• Memory outside designated range can’t be accessed by user-mode
code

• In kernel mode, process has unrestricted access to all memory

• Load instructions for base and limit registers are privileged

• Checks can proceed in parallel

Protection Memory Protection

Logical Addressing

Processor

base

limit

logical addr. +

<

Memory

TRAP

I Can provide logical addressing:
I Program thinks its memory starts at address zero

12 / 20

Logical Addressing

Processor

base

limit

logical addr. +

<

Memory

TRAP

I Can provide logical addressing:
I Program thinks its memory starts at address zero

20
13

-0
5-

19

CS34
Protection

Memory Protection

Logical Addressing

System Calls

Class Question

Given that I/O instructions are privileged. . . and that misusing a
modern I/O device can destroy it

How does a user-mode program perform I/O?

(or do anything else it is “forbidden” to do directly)

13 / 20

Class Question

Given that I/O instructions are privileged. . . and that misusing a
modern I/O device can destroy it

How does a user-mode program perform I/O?

(or do anything else it is “forbidden” to do directly)

20
13

-0
5-

19

CS34
System Calls

Class Question

System Calls

System Calls

System Call: A method used by a process to request action by
the operating system

Implemented as either
I Software interrupt (aka Trap)
I Special syscall instruction

Usually works just like hardware interrupt—control passes through
interrupt vector to a service routine in the OS, mode bit is set to
kernel

Class Question

What things do we need to do in the kernel part of a syscall?

14 / 20

System Calls

System Call: A method used by a process to request action by
the operating system

Implemented as either
I Software interrupt (aka Trap)
I Special syscall instruction

Usually works just like hardware interrupt—control passes through
interrupt vector to a service routine in the OS, mode bit is set to
kernel

Class Question

What things do we need to do in the kernel part of a syscall?

20
13

-0
5-

19

CS34
System Calls

System Calls

The kernel must first save status. Then it needs to figure out which
syscall is being made (including verification of legality). Any
parameters must be recovered from user space; then the
implementing function is called. Finally, results are returned to the
user, status is restored, and user mode is resumed.
Most system calls re-enable interrupts during their execution.

System Calls

MIPS System Call Example

Example code from libc on OS/161

reboot:
addiu v0, $0, SYS_reboot /* load syscall no. */
syscall /* make system call */
beq a3, $0, 1f /* a3= 0 =>call succeeded */
nop /* delay slot */
sw v0, errno /* failure: store errno */
li v1, -1 /* and force return to -1 */
li v0, -1

1:
j ra /* return */
nop /* delay slot */

15 / 20

MIPS System Call Example

Example code from libc on OS/161

reboot:
addiu v0, $0, SYS_reboot /* load syscall no. */
syscall /* make system call */
beq a3, $0, 1f /* a3= 0 =>call succeeded */
nop /* delay slot */
sw v0, errno /* failure: store errno */
li v1, -1 /* and force return to -1 */
li v0, -1

1:
j ra /* return */
nop /* delay slot */20

13
-0

5-
19

CS34
System Calls

MIPS System Call Example

System Calls

X86 System Call Example
Hello World on Linux

.section .rodata
greeting:
.string "Hello World\n"
.text

_start:
mov $12,%edx /* write(1, "Hello World\n", 12) */
mov $greeting,%ecx
mov $1,%ebx
mov $4,%eax /* write is syscall 4 */
int $0x80

xorl %ebx, %ebx /* Set exit status and exit */
mov $0xfc,%eax
int $0x80

hlt /* Just in case... */

16 / 20

X86 System Call Example
Hello World on Linux

.section .rodata
greeting:
.string "Hello World\n"
.text

_start:
mov $12,%edx /* write(1, "Hello World\n", 12) */
mov $greeting,%ecx
mov $1,%ebx
mov $4,%eax /* write is syscall 4 */
int $0x80

xorl %ebx, %ebx /* Set exit status and exit */
mov $0xfc,%eax
int $0x80

hlt /* Just in case... */

20
13

-0
5-

19

CS34
System Calls

X86 System Call Example

System Calls

Functionality

What functionality should be implemented as system calls?

17 / 20

Functionality

What functionality should be implemented as system calls?

20
13

-0
5-

19

CS34
System Calls

Functionality

Let class brainstorm, them make list on board.

System Calls

Some POSIX System Calls
pid = fork() Create child process
pid = waitpid(pid, &statloc, options) Wait for child to terminate
s = execve(name, argv, environp) Replace process’s image

exit(status) Terminate process
fd = open(file, how, ...) Open file for read/write
s = close(fd) Close open file
n = read(fd, buffer, nbytes) Read data from file into buffer
n = write(fd, buffer, nbytes) Write data from buffer to file
pos = lseek(fd, offset, whence) Move file pointer
s = stat(name, &buf) Get file’s status information
s = mkdir(name, mode) Create new directory
s = rmdir(name) Remove empty directory
s = link(name1, name2) Create link to file
s = unlink(name) Remove directory entry
s = mount(special, name, flag) Mount file system
s = umount(special) Unmount file system
s = chdir(dirname) Change working directory
s = chmod(name, mode) Change file’s protection bits
s = kill(pid, signal) Send signal to a process
secs = time(&seconds) Get elapsed time since 1/1/70

18 / 20

Some POSIX System Calls
pid = fork() Create child process
pid = waitpid(pid, &statloc, options) Wait for child to terminate
s = execve(name, argv, environp) Replace process’s image

exit(status) Terminate process
fd = open(file, how, ...) Open file for read/write
s = close(fd) Close open file
n = read(fd, buffer, nbytes) Read data from file into buffer
n = write(fd, buffer, nbytes) Write data from buffer to file
pos = lseek(fd, offset, whence) Move file pointer
s = stat(name, &buf) Get file’s status information
s = mkdir(name, mode) Create new directory
s = rmdir(name) Remove empty directory
s = link(name1, name2) Create link to file
s = unlink(name) Remove directory entry
s = mount(special, name, flag) Mount file system
s = umount(special) Unmount file system
s = chdir(dirname) Change working directory
s = chmod(name, mode) Change file’s protection bits
s = kill(pid, signal) Send signal to a process
secs = time(&seconds) Get elapsed time since 1/1/70

20
13

-0
5-

19

CS34
System Calls

Some POSIX System Calls

System Calls

Beyond System Calls—Library Interfaces

System calls tend to be minimal and low-level

Programmers prefer to use higher-level routines

Class Exercise

What is the key difference between system calls and library calls?

19 / 20

Beyond System Calls—Library Interfaces

System calls tend to be minimal and low-level

Programmers prefer to use higher-level routines

Class Exercise

What is the key difference between system calls and library calls?

20
13

-0
5-

19

CS34
System Calls

Beyond System Calls—Library Interfaces

Next Assignment

The Next Assignment

In the next assignment, you must implement

I open, read, write, lseek, close, dup2
I fork, _exit
I chdir, getcwd
I getpid

I execv, waitpid

What are the data structures you’ll need? Initialization? How/when
is data changed or copied?

In general, how should it all work?

20 / 20

The Next Assignment

In the next assignment, you must implement

I open, read, write, lseek, close, dup2
I fork, _exit
I chdir, getcwd
I getpid

I execv, waitpid

What are the data structures you’ll need? Initialization? How/when
is data changed or copied?

In general, how should it all work?20
13

-0
5-

19

CS34
Next Assignment

The Next Assignment

	The Processor Status Word
	Protection
	Types of Protection
	Memory Protection

	System Calls
	Next Assignment

