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The Processor Status Word

Processor Status Words

Every processor, even a microcontroller, has a status word (often
called PSW). Common contents are:

I Protection control
I Interrupt control
I Single-step flag
I Condition codes
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The Processor Status Word

MIPS Status

MIPS keeps a STATUS word in control register 12:
I Various cache-control bits
I “Boot flag” for booting from ROM
I Five hardware interrupt enables
I Two software interrupt enables
I Three bit pairs called old/previous/current:

I Kernel/user mode
I Global interrupt enable
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The Processor Status Word

How MIPS Interrupts Work

MIPS works like most machines:
I Finish currently executing instructions
I Drain pipeline
I Disable interrupts
I Switch to kernel mode
I Start execution at known location

Minor MIPS detail: in STATUS, old/previous/current is shifted left
and current is set to 0 (kernel mode, no interrupts)
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Protection

Protection

Processes need to be insulated from each other.

What needs protection?

What do we want from hardware to provide protection?
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Stop here to discuss.



Protection

User & Kernel Mode

Two states:
I User mode—Processes
I Kernel mode—OS code to support processes

The hardware usually knows what state we’re in. (Why?)

What happens when we change state?
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Protection Types of Protection

CPU Protection

If a program hangs, it shouldn’t hang the machine

Use a timer interrupt!
I Decremented every clock tick
I Zero⇒ Interrupt
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Protection Types of Protection

I/O Protection

Protect I/O devices from errant programs

Solution: I/O Protection
I Only kernel may interact with I/O hardware
I I/O instructions are privileged
I Interrupt jumps to kernel, sets kernel mode
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Protection Memory Protection

Memory Protection

Protecting I/O devices also requires that we protect
I Interrupt vector
I Interrupt service routines (and rest of kernel)
I Operating system data structures

from modification by errant or malicious programs

Solution: Memory Protection

Class Exercise
What’s the simplest solution we could ask from hardware makers
to solve problem of ensuring that a program doesn’t access
outside its own chunk of physical memory?
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Here, we’re looking for base/limit registers.



Protection Memory Protection

Simple Memory Protection

Processor

base base + limit

address ≥ <
Memory

TRAP

I Use two special registers to check address legality
I Base register—smallest legal physical memory address
I Limit register—size of the range

11 / 20

Simple Memory Protection

Processor

base base + limit

address ≥ <
Memory

TRAP

I Use two special registers to check address legality
I Base register—smallest legal physical memory address
I Limit register—size of the range

20
13

-0
5-

19

CS34
Protection

Memory Protection

Simple Memory Protection

• Memory outside designated range can’t be accessed by user-mode
code

• In kernel mode, process has unrestricted access to all memory

• Load instructions for base and limit registers are privileged

• Checks can proceed in parallel



Protection Memory Protection

Logical Addressing

Processor

base

limit

logical addr. +

<

Memory

TRAP

I Can provide logical addressing:
I Program thinks its memory starts at address zero
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System Calls

Class Question

Given that I/O instructions are privileged. . . and that misusing a
modern I/O device can destroy it

How does a user-mode program perform I/O?

(or do anything else it is “forbidden” to do directly)
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System Calls

System Calls

System Call: A method used by a process to request action by
the operating system

Implemented as either
I Software interrupt (aka Trap)
I Special syscall instruction

Usually works just like hardware interrupt—control passes through
interrupt vector to a service routine in the OS, mode bit is set to
kernel

Class Question

What things do we need to do in the kernel part of a syscall?
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The kernel must first save status. Then it needs to figure out which
syscall is being made (including verification of legality). Any
parameters must be recovered from user space; then the
implementing function is called. Finally, results are returned to the
user, status is restored, and user mode is resumed.
Most system calls re-enable interrupts during their execution.



System Calls

MIPS System Call Example

Example code from libc on OS/161

reboot:
addiu v0, $0, SYS_reboot /* load syscall no. */
syscall /* make system call */
beq a3, $0, 1f /* a3= 0 =>call succeeded */
nop /* delay slot */
sw v0, errno /* failure: store errno */
li v1, -1 /* and force return to -1 */
li v0, -1

1:
j ra /* return */
nop /* delay slot */
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System Calls

X86 System Call Example
Hello World on Linux

.section .rodata
greeting:
.string "Hello World\n"
.text

_start:
mov $12,%edx /* write(1, "Hello World\n", 12) */
mov $greeting,%ecx
mov $1,%ebx
mov $4,%eax /* write is syscall 4 */
int $0x80

xorl %ebx, %ebx /* Set exit status and exit */
mov $0xfc,%eax
int $0x80

hlt /* Just in case... */
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System Calls

Functionality

What functionality should be implemented as system calls?
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Let class brainstorm, them make list on board.



System Calls

Some POSIX System Calls
pid = fork() Create child process
pid = waitpid(pid, &statloc, options) Wait for child to terminate
s = execve(name, argv, environp) Replace process’s image

exit(status) Terminate process
fd = open(file, how, ...) Open file for read/write
s = close(fd) Close open file
n = read(fd, buffer, nbytes) Read data from file into buffer
n = write(fd, buffer, nbytes) Write data from buffer to file
pos = lseek(fd, offset, whence) Move file pointer
s = stat(name, &buf) Get file’s status information
s = mkdir(name, mode) Create new directory
s = rmdir(name) Remove empty directory
s = link(name1, name2) Create link to file
s = unlink(name) Remove directory entry
s = mount(special, name, flag) Mount file system
s = umount(special) Unmount file system
s = chdir(dirname) Change working directory
s = chmod(name, mode) Change file’s protection bits
s = kill(pid, signal) Send signal to a process
secs = time(&seconds) Get elapsed time since 1/1/70
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System Calls

Beyond System Calls—Library Interfaces

System calls tend to be minimal and low-level

Programmers prefer to use higher-level routines

Class Exercise

What is the key difference between system calls and library calls?
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Next Assignment

The Next Assignment

In the next assignment, you must implement

I open, read, write, lseek, close, dup2
I fork, _exit
I chdir, getcwd
I getpid

I execv, waitpid

What are the data structures you’ll need? Initialization? How/when
is data changed or copied?

In general, how should it all work?
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