
CS 134:
Operating Systems

More Memory Management

1 / 27

CS 134:
Operating Systems

More Memory Management

20
13

-0
5-

19

CS34



Overview

Segmentation Recap

Paging

2 / 27

Overview

Segmentation Recap

Paging

20
13

-0
5-

19

CS34

Overview



Segmentation Recap

Segmentation (Recap)

Logical address consists of the pair

<segment-number, offset>

Example

Use 32-bit logical address
I High-order 8 bits are segment number
I Low-order 24 bits are offset within segment

256 segments, of max size 16,777,216 bytes (16MB)

3 / 27

Segmentation (Recap)

Logical address consists of the pair

<segment-number, offset>

Example

Use 32-bit logical address
I High-order 8 bits are segment number
I Low-order 24 bits are offset within segment

256 segments, of max size 16,777,216 bytes (16MB)20
13

-0
5-

19

CS34
Segmentation Recap

Segmentation (Recap)



Segmentation Recap

Segment Table on CPU

Processor needs to map 2D user-defined addresses into 1D
physical addresses.

In segment table, each entry has:
I Base—Starting address of the segment in physical memory
I Limit—Length of the segment

4 / 27

Segment Table on CPU

Processor needs to map 2D user-defined addresses into 1D
physical addresses.

In segment table, each entry has:
I Base—Starting address of the segment in physical memory
I Limit—Length of the segment

20
13

-0
5-

19

CS34
Segmentation Recap

Segment Table on CPU



Segmentation Recap

Segment Translation

5 / 27

Segment Translation

20
13

-0
5-

19

CS34
Segmentation Recap

Segment Translation



Segmentation Recap

Segmentation Architecture

I Relocation
I Dynamic
I By segment table

I Sharing
I Shared segments
I Same segment number

I Allocation
I First fit/best fit
I External fragmentation

Class Exercise
Do shared segments need to
have the same segment
number.

I If so, why?

I If not, why? (Why might we
give them the same
segment number anyway?)

6 / 27

Segmentation Architecture

I Relocation
I Dynamic
I By segment table

I Sharing
I Shared segments
I Same segment number

I Allocation
I First fit/best fit
I External fragmentation

Class Exercise
Do shared segments need to
have the same segment
number.

I If so, why?

I If not, why? (Why might we
give them the same
segment number anyway?)

20
13

-0
5-

19

CS34
Segmentation Recap

Segmentation Architecture



Segmentation Recap

Segmentation Architecture

Class Exercise

Does our segmentation scheme capture the difference between
code and data segments?

I If not, what would we need to fix it?

Class Exercise

What if a program wants more contiguous data space than a
segment can hold? Is this a problem?

7 / 27

Segmentation Architecture

Class Exercise

Does our segmentation scheme capture the difference between
code and data segments?

I If not, what would we need to fix it?

Class Exercise

What if a program wants more contiguous data space than a
segment can hold? Is this a problem?20

13
-0

5-
19

CS34
Segmentation Recap

Segmentation Architecture



Paging

Paging

Properties
I All pages are the same size (e.g., 4K)
I No need for limit registers
I No longer reflect program structure
I Physical locations for pages are called page frames

8 / 27

Paging

Properties
I All pages are the same size (e.g., 4K)
I No need for limit registers
I No longer reflect program structure
I Physical locations for pages are called page frames

20
13

-0
5-

19

CS34
Paging

Paging



Paging

But. . .

Now have a lot of pages.
I 4K pages & 32-bit logical address
⇒ 20-bit page number, 12-bit offset

I 20-bit page number⇒ 1,048,576 possible pages!
I Too many to remember inside processor

9 / 27

But. . .

Now have a lot of pages.
I 4K pages & 32-bit logical address
⇒ 20-bit page number, 12-bit offset

I 20-bit page number⇒ 1,048,576 possible pages!
I Too many to remember inside processor

20
13

-0
5-

19

CS34
Paging

But. . .



Paging

Sparsely Filled Address Spaces

For example,
I Nothing at address zero (why?)
I Code low down in memory
I Static and heap data after code (room to grow up)
I Stack high up (room to grow down)

I Kernel really high up

Solution (?)

Two-level (or three-level) page tables
I 10-bit upper page number (0-1023)
I 10-bit lower page number (0-1023)
I 12-bit offset (0-4095)

10 / 27

Sparsely Filled Address Spaces

For example,
I Nothing at address zero (why?)
I Code low down in memory
I Static and heap data after code (room to grow up)
I Stack high up (room to grow down)

I Kernel really high up

Solution (?)

Two-level (or three-level) page tables
I 10-bit upper page number (0-1023)
I 10-bit lower page number (0-1023)
I 12-bit offset (0-4095)

20
13

-0
5-

19

CS34
Paging

Sparsely Filled Address Spaces



Paging

Sparsely Filled Address Spaces

For example,
I Nothing at address zero (why?)
I Code low down in memory
I Static and heap data after code (room to grow up)
I Stack high up (room to grow down)
I Kernel really high up

Solution (?)

Two-level (or three-level) page tables
I 10-bit upper page number (0-1023)
I 10-bit lower page number (0-1023)
I 12-bit offset (0-4095)

10 / 27

Sparsely Filled Address Spaces

For example,
I Nothing at address zero (why?)
I Code low down in memory
I Static and heap data after code (room to grow up)
I Stack high up (room to grow down)
I Kernel really high up

Solution (?)

Two-level (or three-level) page tables
I 10-bit upper page number (0-1023)
I 10-bit lower page number (0-1023)
I 12-bit offset (0-4095)

20
13

-0
5-

19

CS34
Paging

Sparsely Filled Address Spaces



Paging

Sparsely Filled Address Spaces

For example,
I Nothing at address zero (why?)
I Code low down in memory
I Static and heap data after code (room to grow up)
I Stack high up (room to grow down)
I Kernel really high up

Solution (?)

Two-level (or three-level) page tables
I 10-bit upper page number (0-1023)
I 10-bit lower page number (0-1023)
I 12-bit offset (0-4095)

10 / 27

Sparsely Filled Address Spaces

For example,
I Nothing at address zero (why?)
I Code low down in memory
I Static and heap data after code (room to grow up)
I Stack high up (room to grow down)
I Kernel really high up

Solution (?)

Two-level (or three-level) page tables
I 10-bit upper page number (0-1023)
I 10-bit lower page number (0-1023)
I 12-bit offset (0-4095)

20
13

-0
5-

19

CS34
Paging

Sparsely Filled Address Spaces



Paging

Zero-Level Page Table

Huh?

11 / 27

Zero-Level Page Table

Huh?

20
13

-0
5-

19

CS34
Paging

Zero-Level Page Table



Paging

Zero-Level Page Table

Class Exercise

What are the pros and cons?

How big a TLB do you want?

12 / 27

Zero-Level Page Table

Class Exercise

What are the pros and cons?

How big a TLB do you want?

20
13

-0
5-

19

CS34
Paging

Zero-Level Page Table



Paging

Page Table Design Objectives

Here’s what we want:
I Needs to be in memory
I Size is O(frames)
I Want O(1) performance
I Needs to act like a TLB, i.e.,

I Can be seen as “just a big cache”
I Maps pages→ frames
I Don’t want to have to flush it all the time

13 / 27

Page Table Design Objectives

Here’s what we want:
I Needs to be in memory
I Size is O(frames)
I Want O(1) performance
I Needs to act like a TLB, i.e.,

I Can be seen as “just a big cache”
I Maps pages→ frames
I Don’t want to have to flush it all the time

20
13

-0
5-

19

CS34
Paging

Page Table Design Objectives



Paging

Inverted Page Tables

I One row per physical frame, with reverse mapping
I Given virtual address, how to find physical one?

I Basically a search problem

I Hash tables to the rescue!

Question: Is the hash table bigger than the number of frames?

14 / 27

Inverted Page Tables

I One row per physical frame, with reverse mapping
I Given virtual address, how to find physical one?

I Basically a search problem

I Hash tables to the rescue!

Question: Is the hash table bigger than the number of frames?

20
13

-0
5-

19

CS34
Paging

Inverted Page Tables



Paging

Inverted Page Tables

I One row per physical frame, with reverse mapping
I Given virtual address, how to find physical one?

I Basically a search problem
I Hash tables to the rescue!

Question: Is the hash table bigger than the number of frames?

14 / 27

Inverted Page Tables

I One row per physical frame, with reverse mapping
I Given virtual address, how to find physical one?

I Basically a search problem
I Hash tables to the rescue!

Question: Is the hash table bigger than the number of frames?

20
13

-0
5-

19

CS34
Paging

Inverted Page Tables



Paging

Hashed (Inverted) Page Tables

15 / 27

Hashed (Inverted) Page Tables

20
13

-0
5-

19

CS34
Paging

Hashed (Inverted) Page Tables



Paging

A Question

Operating Systems Concepts, Silberschatz & Galvin

Does this claim make sense?

16 / 27

A Question

Operating Systems Concepts, Silberschatz & Galvin

Does this claim make sense?20
13

-0
5-

19

CS34
Paging

A Question



Paging

Processors Compared

Physical Virtual TLB Size Segments Pages Hashed
addrs addrs page tables

Pentium 4 36-bit 32-bit 64 varied 4k, 4M —
Opteron 40-bit 48-bit 1088 varied 4k, 4M —

Itanium 2 50-bit 64-bit 4 × 32 — 4k. . . 4G —
PowerPC 604 32-bit 52-bit 256 < 256MB 4k Yes
PowerPC 970 42-bit 64-bit 1024 < 256MB 4k Yes

UltraSparc 36-bit 64-bit 64 — 8k. . . 4M Yes
Alpha 41-bit 64-bit 256 — 8k. . . 4M —

MIPS R3000 32-bit 32-bit 64 — 4k. . . —

17 / 27

Processors Compared

Physical Virtual TLB Size Segments Pages Hashed
addrs addrs page tables

Pentium 4 36-bit 32-bit 64 varied 4k, 4M —
Opteron 40-bit 48-bit 1088 varied 4k, 4M —

Itanium 2 50-bit 64-bit 4 × 32 — 4k. . . 4G —
PowerPC 604 32-bit 52-bit 256 < 256MB 4k Yes
PowerPC 970 42-bit 64-bit 1024 < 256MB 4k Yes

UltraSparc 36-bit 64-bit 64 — 8k. . . 4M Yes
Alpha 41-bit 64-bit 256 — 8k. . . 4M —

MIPS R3000 32-bit 32-bit 64 — 4k. . . —

20
13

-0
5-

19

CS34
Paging

Processors Compared



Paging

Observation

Programs do not need all their code all the time. . .

18 / 27

Observation

Programs do not need all their code all the time. . .

20
13

-0
5-

19

CS34
Paging

Observation



Paging

Overlays / Dynamic Loading

On modern Unix systems
I handle = dlopen(filename, mode)

I addr = dlsym(handle, sym)

I err = dlclose(handle)

Issues. . . ?

19 / 27

Overlays / Dynamic Loading

On modern Unix systems
I handle = dlopen(filename, mode)

I addr = dlsym(handle, sym)

I err = dlclose(handle)

Issues. . . ?

20
13

-0
5-

19

CS34
Paging

Overlays / Dynamic Loading

dlopen maps a file into the address space and returns an opaque
handle.
dlsym looks up a symbol in a dynamically loaded file.



Paging

Memory Recap

We now have a memory scheme where
I Programs use logical addresses
I Memory sharing is easy
I Processes are either in memory or swapped out
I Hardware can detect invalid memory accesses to trap to the

OS

We can already “swap out” whole programs, but can we do
better. . . ?

20 / 27

Memory Recap

We now have a memory scheme where
I Programs use logical addresses
I Memory sharing is easy
I Processes are either in memory or swapped out
I Hardware can detect invalid memory accesses to trap to the

OS

We can already “swap out” whole programs, but can we do
better. . . ?

20
13

-0
5-

19

CS34
Paging

Memory Recap



Paging

Demand Paging

Need to
I Bring a page into memory only when it is needed.

I Less I/O needed
I Less memory needed
I Faster response
I More users & processes

I Mark pages not in memory as invalid in page table

When program accesses an invalid page, two possibilities. . .

21 / 27

Demand Paging

Need to
I Bring a page into memory only when it is needed.

I Less I/O needed
I Less memory needed
I Faster response
I More users & processes

I Mark pages not in memory as invalid in page table

When program accesses an invalid page, two possibilities. . .

20
13

-0
5-

19

CS34
Paging

Demand Paging



Paging

Demand Paging—Hardware Support

Thus,
I Invalid accesses generate a trap
I Need to restart program after the trap
I Must seem like “nothing happened”

Example: The C-code for:

--mystack = new_item;

might be implemented as a single instruction:

mov -(r6),r1

Class Exercise

Why is this instruction potentially problematic?
22 / 27

Demand Paging—Hardware Support

Thus,
I Invalid accesses generate a trap
I Need to restart program after the trap
I Must seem like “nothing happened”

Example: The C-code for:

--mystack = new_item;

might be implemented as a single instruction:

mov -(r6),r1

Class Exercise

Why is this instruction potentially problematic?

20
13

-0
5-

19

CS34
Paging

Demand Paging—Hardware Support



Paging

Page Faults

What needs to happen when a page fault occurs?

23 / 27

Page Faults

What needs to happen when a page fault occurs?

20
13

-0
5-

19

CS34
Paging

Page Faults



Paging

Page Faults

What happens. . .
I User process accesses invalid memory—traps to OS
I OS saves process state
I OS checks access was actually legal
I Find a free frame
I Read from swap to free frame—I/O wait, process blocked
I Interrupt from disk (I/O complete)—process ready
I Scheduler restarts process—process running
I Adjust page table
I Restore process state
I Return to user code

24 / 27

Page Faults

What happens. . .
I User process accesses invalid memory—traps to OS
I OS saves process state
I OS checks access was actually legal
I Find a free frame
I Read from swap to free frame—I/O wait, process blocked
I Interrupt from disk (I/O complete)—process ready
I Scheduler restarts process—process running
I Adjust page table
I Restore process state
I Return to user code

20
13

-0
5-

19

CS34
Paging

Page Faults



Paging

Page Faults (cont.)

How long?
I Disk is slow
I 5–15 ms is a conservative guess
I Main memory takes 5–15 ns
I Page fault is about 1 million times slower than a regular

memory access
I Page faults must be rare! (Need locality!)

25 / 27

Page Faults (cont.)

How long?
I Disk is slow
I 5–15 ms is a conservative guess
I Main memory takes 5–15 ns
I Page fault is about 1 million times slower than a regular

memory access
I Page faults must be rare! (Need locality!)

20
13

-0
5-

19

CS34
Paging

Page Faults (cont.)



Paging

A “Back of an Envelope Calculation”

How often are there page faults?

An example from a desktop machine:
I In 14 days

I 378,110 page-ins
I Average load < 4%→ 12 hours actual compute time
I 8.75 page faults per second average

I 1,000,000,000 memory accesses per second (a guess)
I 43,200,000,000,000 memory accesses in 12 hours
I 1 page-in every 114,252,466 memory accesses
I Using 5 ns for memory, 5 ms for disk:

I t avg = (5,000,000 ∗ 1 + 5 ∗ 114,252,465)/114,252,466
I t avg = 5.04ns

26 / 27

A “Back of an Envelope Calculation”

How often are there page faults?

An example from a desktop machine:
I In 14 days

I 378,110 page-ins
I Average load < 4%→ 12 hours actual compute time
I 8.75 page faults per second average

I 1,000,000,000 memory accesses per second (a guess)
I 43,200,000,000,000 memory accesses in 12 hours
I 1 page-in every 114,252,466 memory accesses
I Using 5 ns for memory, 5 ms for disk:

I t avg = (5,000,000 ∗ 1 + 5 ∗ 114,252,465)/114,252,466
I t avg = 5.04ns

20
13

-0
5-

19

CS34
Paging

A “Back of an Envelope Calculation”



Paging

Page Faults (cont.)

Other kinds of page faults:
I Demand-page executables from their files, not swap device
I Copy-on-write memory—great for fork
I Lazy memory allocation
I Other tricks. . .

27 / 27

Page Faults (cont.)

Other kinds of page faults:
I Demand-page executables from their files, not swap device
I Copy-on-write memory—great for fork
I Lazy memory allocation
I Other tricks. . .

20
13

-0
5-

19

CS34
Paging

Page Faults (cont.)

What kind of other tricks? Well, for example, debugging and tracing;
VM translation; buffer overflow prevention.


	Segmentation Recap
	Paging

