CS34

2013-05-19

CS 134:

Operating Systems

More Memory Management




CS34

Overview

- Overview

2013-05-19



Segmentation Recap

CS34
Segmentation Recap

Segmentation (Recap)

LSegmentation (Recap)

2013-05-19

Logical address consists of the pair
<segment-number, offset>

Example

Use 32-bit logical address
High-order 8 bits are segment number
Low-order 24 bits are offset within segment

256 segments, of max size 16,777,216 bytes (16MB)



Segmentation Recap

Segment Table on CPU Cs34

Segmentation Recap

LSegment Table on CPU

2013-05-19

Processor needs to map 2D user-defined addresses into 1D
physical addresses.

In segment table, each entry has:
Base—Starting address of the segment in physical memory
Limit—Length of the segment




Segmentation Recap

t Translation

logical address

segment table

base _limit d<l @
0

physical address

physical memory

27

2013-05-19

CS34
Segmentation Recap

LSegment Translation




Segmentation Recap

Segmentation Architecture

Relocation

Dynamic

By segment table
Sharing

Shared segments

Same segment number
Allocation

First fit/best fit
External fragmentation

CS34
Segmentation Recap

LSegmentation Architecture

2013-05-19

Class Exercise

Do shared segments need to
have the same segment
number.

If so, why?

If not, why? (Why might we
give them the same
segment number anyway?)




Segmentation Recap

CS34
Segmentation Recap

Segmentation Architecture

LSegmentation Architecture

2013-05-19

Class Exercise

Does our segmentation scheme capture the difference between
code and data segments?

If not, what would we need to fix it?

Class Exercise

What if a program wants more contiguous data space than a
segment can hold? Is this a problem?



Paging

CS34
Paging

LPaging

2013-05-19

Properties
All pages are the same size (e.g., 4K)
No need for limit registers
No longer reflect program structure
Physical locations for pages are called page frames



Paging

CS34
Paging

LBut. ..

2013-05-19

Now have a /ot of pages.

4K pages & 32-bit logical address
= 20-bit page number, 12-bit offset

20-bit page number = 1,048,576 possible pages!
Too many to remember inside processor



Paging
Sparsely Filled Address Spaces g

For example,
Nothing at address zero (why?)
Code low down in memory
Static and heap data after code (room to grow up)
Stack high up (room to grow down)

LSparser Filled Address Spaces

2013-05-19

[T

[T

10/27




Paging
Sparsely Filled Address Spaces g

For example,
Nothing at address zero (why?)
Code low down in memory
Static and heap data after code (room to grow up)
Stack high up (room to grow down)
Kernel really high up

LSparser Filled Address Spaces

2013-05-19

INNIARRARRR AR AR RN N RRRAARARN

[T

10/27




Paging
Sparsely Filled Address Spaces g

For example,
Nothing at address zero (why?)
Code low down in memory
Static and heap data after code (room to grow up)
Stack high up (room to grow down)
Kernel really high up

Solution (?)

Two-level (or three-level) page tables
10-bit upper page number (0-1023)
10-bit lower page number (0-1023)
12-bit offset (0-4095)

LSparser Filled Address Spaces

2013-05-19

INNIARRARRR AR AR RN N RRRAARARN

[T

10/27




Paging

Zero-Level Page Table o g
?)'_ LZero-LeveI Page Table

Huh?

11/27



Paging

Zero-Level Page Table csa4

gl Paging
4 =
) L Zero-Level Page Table —
o —
( 1 0 N =
4 | 193 3 |12 1
logical address physical address 2
3 | 11
4 | a 4
14| 4
5
translation lookaside buffer
T
7
Class Exercise )
9
What are the pros and cons? o
How big a TLB do you want? "

physical memory (frames)

12/27



Page Table Design Objectives g

LPage Table Design Objectives

2013-05-19

Here’s what we want:
Needs to be in memory
Size is O(frames)

Want O(1) performance

Needs to act like a TLB, i.e.,

Can be seen as “just a big cache”
Maps pages — frames
Don’t want to have to flush it all the time

13/27



Paging

Inverted Page Tables Csa4

Paging

Llnverted Page Tables

2013-05-19

One row per physical frame, with reverse mapping
Given virtual address, how to find physical one?
Basically a search problem

14/27




Paging

Inverted Page Tables Csa4

Paging

Llnverted Page Tables

2013-05-19

One row per physical frame, with reverse mapping
Given virtual address, how to find physical one?

Basically a search problem
Hash tables to the rescue!

Question: Is the hash table bigger than the number of frames?

14/27




Paging

CS34
Paging

Hashed (Inverted) Page Tables

LHashed (Inverted) Page Tables

2013-05-19

offset
a |

3

physical address

pld  page frame

6
17 | o |10
T [ 1| 6
7
2|2 |0 .
( 17 | 3 | 11
N7 2 |3 —
9
3 |15 | 8 0
5 | 14 | 4
1
hash 1able physical memory (frames)

15/27



Paging

A Question > G534
- Paging
8
™ LA Question
=

memoa oOr mierprocess Communicaton. some operaung systems lmplement
shared memory using shared pages.

Systems that use inverted page tables have difficulty implementing shared
memory. Shared memory is usually implemented as multiple virtual addresses
(one for each process sharing the memory) that are mapped to one physical
address. This standard method cannot be used, however, as there is only one
virtual page entry for every physical page, so one physical page cannot have
two (or more) shared virtual addresses.

ﬁronniﬁno memnorv ZFF(\T'(‘]iﬂO tn naoeaq ﬂTﬁ‘YidﬂQ nitmerntiQ ﬁfhﬂ?‘ hthFGf‘Q
Operating Systems Concepts, Silberschatz & Galvin

Does this claim make sense?

16/27



Paging

Processors Compared csas

Paging

- Processors Compared

2013-05-19

Physical  Virtual TLB Size  Segments Pages Hashed

addrs addrs page tables
Pentium 4 36-bit 32-bit 64 varied 4k, 4M —
Opteron 40-bit 48-bit 1088 varied 4k, 4M —
Itanium 2 50-bit 64-bit 4 x 32 — 4k...4G —
PowerPC 604 32-bit 52-bit 256 < 256MB 4k Yes
PowerPC 970 42-bit 64-bit 1024 < 256MB 4k Yes
UltraSparc 36-bit 64-bit 64 — 8k...4M Yes
Alpha 41-bit 64-bit 256 — 8k...4M —
MIPS R3000 32-bit 32-bit 64 — 4k. .. —

17/27



Paging

Observation > G534
- Paging
8
) L Observation
o
(qV]

Programs do not need all their code all the time. ..

18/27



Paging

Overlays / Dynamic Loading cs34

Paging

LOverIays/ Dynamic Loading

2013-05-19

dlopen maps a file into the address space and returns an opaque
handle.

On modern Unix systems dlsym looks up a symbol in a dynamically loaded file.

handle = dlopen (filename, mode)
addr = dlsym(handle, sym)
err = dlclose (handle)

Issues...?

19/27



Paging

Memory Recap et

Paging

LMemory Recap

2013-05-19

We now have a memory scheme where
Programs use logical addresses
Memory sharing is easy
Processes are either in memory or swapped out

Hardware can detect invalid memory accesses to trap to the
0S

We can already “swap out” whole programs, but can we do
better...?

20/27



Paging

Demand Paging

Need to
Bring a page into memory only when it is needed.

Less I/0O needed

Less memory needed
Faster response

More users & processes

Mark pages not in memory as invalid in page table

When program accesses an invalid page, two possibilities. . .

CS34
Paging

LDemand Paging

2013-05-19

21/27




Paging

CS34
Paging

Demand Paging—Hardware Support

ThUS, LDemand Paging—Hardware Support
Invalid accesses generate a trap
Need to restart program after the trap

Must seem like “nothing happened”

2013-05-19

Example: The C-code for:
—--mystack = new_item;
might be implemented as a single instruction:

mov - (r6),rl

Class Exercise

Why is this instruction potentially problematic?
22/27




Paging

Page Faults Csas

Paging

What needs fo appen when a page fault occurs?.

LPage Faults

2013-05-19

What needs to happen when a page fault occurs?

23/27



Paging

Page Faults Csas

gl Paging

8

) LPage Faults
o

IS4

What happens. ..
User process accesses invalid memory—traps to OS
OS saves process state
OS checks access was actually legal
Find a free frame
Read from swap to free frame—I/O wait, process blocked
Interrupt from disk (I/O complete)—process ready
Scheduler restarts process—process running
Adjust page table
Restore process state
Return to user code

24/27



Paging

Page Faults (cont.) csa4

Paging

LPage Faults (cont.)

2013-05-19

How long?
Disk is slow
5-15 ms is a conservative guess
Main memory takes 5-15 ns

Page fault is about 1 million times slower than a regular
memory access

Page faults must be rare! (Need locality!)

25/27



Paging
A “Back of an Envelope Calculation” B e

LA “Back of an Envelope Calculation”

2013-05-19

How often are there page faults?

An example from a desktop machine:
In 14 days
378,110 page-ins
Average load < 4% — 12 hours actual compute time
8.75 page faults per second average

1,000,000,000 memory accesses per second (a guess)
43,200,000,000,000 memory accesses in 12 hours

1 page-in every 114,252,466 memory accesses

Using 5 ns for memory, 5 ms for disk:

tavg = (5,000,000 * 1 + 5« 114,252,465) /114,252, 466
tavg = 5.04ns

26/27



Paging

Page Faults (cont.) G4

Paging

LPage Faults (cont.)

2013-05-19

What kind of other tricks? Well, for example, debugging and tracing;

Other kinds of page faults: VM translation; buffer overflow prevention.

Demand-page executables from their files, not swap device
Copy-on-write memory—great for fork

Lazy memory allocation

Other tricks. . .

27127



	Segmentation Recap
	Paging

