
CS 134:
Operating Systems

Disk Deja-vu

1 / 29

CS 134:
Operating Systems

Disk Deja-vu

20
13

-0
5-

17

CS34



Overview

Working Sets
Allocation Policies
Thrashing

Secondary Storage
Allocation Methods

2 / 29

Overview

Working Sets
Allocation Policies
Thrashing

Secondary Storage
Allocation Methods

20
13

-0
5-

17

CS34

Overview



Working Sets

Enough Frames?

How do you know if you have enough frames to work with. . . ?

3 / 29

Enough Frames?

How do you know if you have enough frames to work with. . . ?

20
13

-0
5-

17

CS34
Working Sets

Enough Frames?



Working Sets

Working Sets

With fewer pages, page fault rate rises.
I If a process “almost always” page faults, it needs more frames
I If a process “almost never” page faults, it has spare frames

4 / 29

Working Sets

With fewer pages, page fault rate rises.
I If a process “almost always” page faults, it needs more frames
I If a process “almost never” page faults, it has spare frames

20
13

-0
5-

17

CS34
Working Sets

Working Sets



Working Sets

Working Sets

How can we keep track of the working set of a process?

5 / 29

Working Sets

How can we keep track of the working set of a process?

20
13

-0
5-

17

CS34
Working Sets

Working Sets

Formal definition is “pages referenced in last k accesses.” Close
approximation is “pages referenced in last n ms.” Note that this is
pretty close to what the CLOCK algorithm does, except that other
processes can interfere. Which leads to. . .



Working Sets Allocation Policies

Local vs. Global

Whose pages do we take?

6 / 29

Local vs. Global

Whose pages do we take?

20
13

-0
5-

17

CS34
Working Sets

Allocation Policies
Local vs. Global



Working Sets Allocation Policies

Frame Allocation Policies

So far, we’ve examined paging without thinking about
processes—but what about processes?

I Each process needs a bare minimum number of pages (set
by hardware characteristics of machine)

I Frames need to be shared out fairly between processes

7 / 29

Frame Allocation Policies

So far, we’ve examined paging without thinking about
processes—but what about processes?

I Each process needs a bare minimum number of pages (set
by hardware characteristics of machine)

I Frames need to be shared out fairly between processes

20
13

-0
5-

17

CS34
Working Sets

Allocation Policies
Frame Allocation Policies



Working Sets Allocation Policies

Local, Fixed Frame Allocation

Give each of the n processes 1/n of the available frames
I Each process can only take frames from itself

Class Exercise

What do you think?

8 / 29

Local, Fixed Frame Allocation

Give each of the n processes 1/n of the available frames
I Each process can only take frames from itself

Class Exercise

What do you think?

20
13

-0
5-

17

CS34
Working Sets

Allocation Policies
Local, Fixed Frame Allocation



Working Sets Allocation Policies

Local, Proportional Frame Allocation

Give each process frames in proportion to the amount of virtual
memory they use

Class Exercise

What do you think?

9 / 29

Local, Proportional Frame Allocation

Give each process frames in proportion to the amount of virtual
memory they use

Class Exercise

What do you think?

20
13

-0
5-

17

CS34
Working Sets

Allocation Policies
Local, Proportional Frame Allocation

• Some processes use a lot of VM, but don’t access it often

• Some processes use a little VM, but access it often

• Not fair



Working Sets Allocation Policies

Global, Variable Allocation

Just take the “best” (e.g., LRU) page, no matter which process it
belongs to. . .

Class Exercise
Is this policy fair?

If not, why not?

10 / 29

Global, Variable Allocation

Just take the “best” (e.g., LRU) page, no matter which process it
belongs to. . .

Class Exercise
Is this policy fair?

If not, why not?

20
13

-0
5-

17

CS34
Working Sets

Allocation Policies
Global, Variable Allocation



Working Sets Allocation Policies

Local, Variable Allocation

Each program has a frame allocation
I Use working set measurements to adjust frame allocation

from time to time.
I Each process can only take frames from itself.

Class Exercise

What’s wrong with this policy?
I I.e., what assumptions are we making that could be wrong?

What should we do if the working sets of all processes are more
than the total number of frames available?

11 / 29

Local, Variable Allocation

Each program has a frame allocation
I Use working set measurements to adjust frame allocation

from time to time.
I Each process can only take frames from itself.

Class Exercise

What’s wrong with this policy?
I I.e., what assumptions are we making that could be wrong?

What should we do if the working sets of all processes are more
than the total number of frames available?

20
13

-0
5-

17

CS34
Working Sets

Allocation Policies
Local, Variable Allocation

Wrong assumptions: that we can measure working sets properly.
That we can fit all working sets in memory.



Working Sets Allocation Policies

Local, Variable Allocation

Each program has a frame allocation
I Use working set measurements to adjust frame allocation

from time to time.
I Each process can only take frames from itself.

Class Exercise

What’s wrong with this policy?
I I.e., what assumptions are we making that could be wrong?

What should we do if the working sets of all processes are more
than the total number of frames available?

11 / 29

Local, Variable Allocation

Each program has a frame allocation
I Use working set measurements to adjust frame allocation

from time to time.
I Each process can only take frames from itself.

Class Exercise

What’s wrong with this policy?
I I.e., what assumptions are we making that could be wrong?

What should we do if the working sets of all processes are more
than the total number of frames available?20

13
-0

5-
17

CS34
Working Sets

Allocation Policies
Local, Variable Allocation

Wrong assumptions: that we can measure working sets properly.
That we can fit all working sets in memory.



Working Sets Thrashing

Thrashing

If we don’t have “enough” pages, the page-fault rate is very high
—leads to thrashing. . .

I Low CPU utilization
I Lots of I/O activity

12 / 29

Thrashing

If we don’t have “enough” pages, the page-fault rate is very high
—leads to thrashing. . .

I Low CPU utilization
I Lots of I/O activity

20
13

-0
5-

17

CS34
Working Sets

Thrashing

Thrashing



Working Sets Thrashing

Thrashing

Under local replacement policy, only problem process is affected
(usually)

I Can detect and swap out until can give bigger working set
I If can’t give big enough, might want to kill. . .

Under global replacement policy, whole machine can be brought
to its knees!

. . . But even under local policy, disk can become so busy that no
other work gets done!

13 / 29

Thrashing

Under local replacement policy, only problem process is affected
(usually)

I Can detect and swap out until can give bigger working set
I If can’t give big enough, might want to kill. . .

Under global replacement policy, whole machine can be brought
to its knees!

. . . But even under local policy, disk can become so busy that no
other work gets done!20

13
-0

5-
17

CS34
Working Sets

Thrashing

Thrashing



Secondary Storage

Secondary Storage

I.e., Storing stuff on disk, SSD, or network—why?

Class Exercise

What properties does disk have that differentiate it from RAM?

What properties are similar?

14 / 29

Secondary Storage

I.e., Storing stuff on disk, SSD, or network—why?

Class Exercise

What properties does disk have that differentiate it from RAM?

What properties are similar?

20
13

-0
5-

17

CS34
Secondary Storage

Secondary Storage



Secondary Storage

Disks—Properties

I Large array of logical blocks (cf., page frames)
I Block-based structure (partially) hidden in file APIs
I Logical block = smallest unit of transfer (cf., page size)
I Logical blocks mapped to disk sectors sequentially

I Block zero is first sector, first track outermost cylinder
I Mapping proceeds in order through:

I Sectors in track
I Tracks in cylinder
I Cylinders on disk

I Access is slow, but sequential access faster than random
I Disk space→ files (cf., memory→ processes)

15 / 29

Disks—Properties

I Large array of logical blocks (cf., page frames)
I Block-based structure (partially) hidden in file APIs
I Logical block = smallest unit of transfer (cf., page size)
I Logical blocks mapped to disk sectors sequentially

I Block zero is first sector, first track outermost cylinder
I Mapping proceeds in order through:

I Sectors in track
I Tracks in cylinder
I Cylinders on disk

I Access is slow, but sequential access faster than random
I Disk space→ files (cf., memory→ processes)20

13
-0

5-
17

CS34
Secondary Storage

Disks—Properties



Secondary Storage Allocation Methods

Disk as One File

Like giving all memory to one process

I Entire disk used for one “file”
I File is seen as big stream of bytes
I Usually fixed size, writes overwrite old data
I To read data at position p,

I block =

p / BLOCK_SIZE

I offset =

p % BLOCK_SIZE

Class Exercise

What kind of performance can we expect?

When might such a design be useful?

16 / 29

Disk as One File

Like giving all memory to one process

I Entire disk used for one “file”
I File is seen as big stream of bytes
I Usually fixed size, writes overwrite old data
I To read data at position p,

I block =

p / BLOCK_SIZE

I offset =

p % BLOCK_SIZE

Class Exercise

What kind of performance can we expect?

When might such a design be useful?

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Disk as One File

Random access is fast (as possible). Sequential is fast. Best for
special cases, such as databases, paging/swap files.
OS still has work to do, preserving illusion of byte stream of bytes
rather than discrete blocks.



Secondary Storage Allocation Methods

Disk as One File

Like giving all memory to one process

I Entire disk used for one “file”
I File is seen as big stream of bytes
I Usually fixed size, writes overwrite old data
I To read data at position p,

I block = p / BLOCK_SIZE
I offset = p % BLOCK_SIZE

Class Exercise

What kind of performance can we expect?

When might such a design be useful?

16 / 29

Disk as One File

Like giving all memory to one process

I Entire disk used for one “file”
I File is seen as big stream of bytes
I Usually fixed size, writes overwrite old data
I To read data at position p,

I block = p / BLOCK_SIZE
I offset = p % BLOCK_SIZE

Class Exercise

What kind of performance can we expect?

When might such a design be useful?

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Disk as One File

Random access is fast (as possible). Sequential is fast. Best for
special cases, such as databases, paging/swap files.
OS still has work to do, preserving illusion of byte stream of bytes
rather than discrete blocks.



Secondary Storage Allocation Methods

Fixed Partitioning

Support N files, each with 1/N th of the available space

Pretty much the same. . .

17 / 29

Fixed Partitioning

Support N files, each with 1/N th of the available space

Pretty much the same. . .

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Fixed Partitioning



Secondary Storage Allocation Methods

Dynamic Partitioning (aka Contiguous Allocation)

More than one file per disk; all space per file is contiguous

I Each file occupies set of contiguous blocks on disk
I For each file f:

I start_of(f)—block where f begins
I length_of(f)—current size of f

I To read data at position p in file f
I block =

start_of(f) + p / BLOCK_SIZE

I offset =

p % BLOCK_SIZE

Class Exercise

What kind of performance can we expect?

What’s missing? What problems can we expect?

18 / 29

Dynamic Partitioning (aka Contiguous Allocation)

More than one file per disk; all space per file is contiguous

I Each file occupies set of contiguous blocks on disk
I For each file f:

I start_of(f)—block where f begins
I length_of(f)—current size of f

I To read data at position p in file f
I block =

start_of(f) + p / BLOCK_SIZE

I offset =

p % BLOCK_SIZE

Class Exercise

What kind of performance can we expect?

What’s missing? What problems can we expect?

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Dynamic Partitioning (aka Contiguous Allocation)

Random & sequential access fast. External fragmentation when files
deleted. What about compaction? Files can’t grow unless there’s
empty space next to them.



Secondary Storage Allocation Methods

Dynamic Partitioning (aka Contiguous Allocation)

More than one file per disk; all space per file is contiguous

I Each file occupies set of contiguous blocks on disk
I For each file f:

I start_of(f)—block where f begins
I length_of(f)—current size of f

I To read data at position p in file f
I block = start_of(f) + p / BLOCK_SIZE
I offset = p % BLOCK_SIZE

Class Exercise

What kind of performance can we expect?

What’s missing? What problems can we expect?

18 / 29

Dynamic Partitioning (aka Contiguous Allocation)

More than one file per disk; all space per file is contiguous

I Each file occupies set of contiguous blocks on disk
I For each file f:

I start_of(f)—block where f begins
I length_of(f)—current size of f

I To read data at position p in file f
I block = start_of(f) + p / BLOCK_SIZE
I offset = p % BLOCK_SIZE

Class Exercise

What kind of performance can we expect?

What’s missing? What problems can we expect?

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Dynamic Partitioning (aka Contiguous Allocation)

Random & sequential access fast. External fragmentation when files
deleted. What about compaction? Files can’t grow unless there’s
empty space next to them.



Secondary Storage Allocation Methods

Linked Allocation

19 / 29

Linked Allocation

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Linked Allocation



Secondary Storage Allocation Methods

Linked Allocation

Make each file block point to next one:
I For each file f,

start_of(f)—block where f begins
each block, b, has a pointer (size PTR_SIZE), such that

next_block(b)—block that comes after b
I To read data at position p, in file f

I block =

find_block(start_of(f),
p / (BLOCK_SIZE − PTR_SIZE))

I offset =

p % (BLOCK_SIZE − PTR_SIZE)

Class Exercise

What kind of performance can we expect?

20 / 29

Linked Allocation

Make each file block point to next one:
I For each file f,

start_of(f)—block where f begins
each block, b, has a pointer (size PTR_SIZE), such that

next_block(b)—block that comes after b
I To read data at position p, in file f

I block =

find_block(start_of(f),
p / (BLOCK_SIZE − PTR_SIZE))

I offset =

p % (BLOCK_SIZE − PTR_SIZE)

Class Exercise

What kind of performance can we expect?20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Linked Allocation

Find_block is a linear search. No external fragmentation. Random
access is slow. Sequential access is okay (but not great.)



Secondary Storage Allocation Methods

Linked Allocation

Make each file block point to next one:
I For each file f,

start_of(f)—block where f begins
each block, b, has a pointer (size PTR_SIZE), such that

next_block(b)—block that comes after b
I To read data at position p, in file f

I block = find_block(start_of(f),
p / (BLOCK_SIZE − PTR_SIZE))

I offset = p % (BLOCK_SIZE − PTR_SIZE)

Class Exercise

What kind of performance can we expect?

20 / 29

Linked Allocation

Make each file block point to next one:
I For each file f,

start_of(f)—block where f begins
each block, b, has a pointer (size PTR_SIZE), such that

next_block(b)—block that comes after b
I To read data at position p, in file f

I block = find_block(start_of(f),
p / (BLOCK_SIZE − PTR_SIZE))

I offset = p % (BLOCK_SIZE − PTR_SIZE)

Class Exercise

What kind of performance can we expect?20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Linked Allocation

Find_block is a linear search. No external fragmentation. Random
access is slow. Sequential access is okay (but not great.)



Secondary Storage Allocation Methods

Linked Allocation

21 / 29

Linked Allocation

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Linked Allocation



Secondary Storage Allocation Methods

Linked Allocation

22 / 29

Linked Allocation

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Linked Allocation

Adding an end pointer makes appends much cheaper.



Secondary Storage Allocation Methods

File Allocation Table

Make each block in an array (fat) point to the next one block in
file

I For each file f,
start_of(f)—block where f begins
fat[b]—block that comes after b

I To read data at position p in file f
I block =

find_block(start_of(f), p / BLOCK_SIZE)

I offset =

p % BLOCK_SIZE

Class Exercise

What are the problems with this approach?

23 / 29

File Allocation Table

Make each block in an array (fat) point to the next one block in
file

I For each file f,
start_of(f)—block where f begins
fat[b]—block that comes after b

I To read data at position p in file f
I block =

find_block(start_of(f), p / BLOCK_SIZE)

I offset =

p % BLOCK_SIZE

Class Exercise

What are the problems with this approach?20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
File Allocation Table

Here, find_block is a list search through the FAT, which is stored in
memory: no (or few) extra disk accesses.
Problems: you still have essentially random allocation on the disk.



Secondary Storage Allocation Methods

File Allocation Table

Make each block in an array (fat) point to the next one block in
file

I For each file f,
start_of(f)—block where f begins
fat[b]—block that comes after b

I To read data at position p in file f
I block = find_block(start_of(f), p / BLOCK_SIZE)
I offset = p % BLOCK_SIZE

Class Exercise

What are the problems with this approach?

23 / 29

File Allocation Table

Make each block in an array (fat) point to the next one block in
file

I For each file f,
start_of(f)—block where f begins
fat[b]—block that comes after b

I To read data at position p in file f
I block = find_block(start_of(f), p / BLOCK_SIZE)
I offset = p % BLOCK_SIZE

Class Exercise

What are the problems with this approach?20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
File Allocation Table

Here, find_block is a list search through the FAT, which is stored in
memory: no (or few) extra disk accesses.
Problems: you still have essentially random allocation on the disk.



Secondary Storage Allocation Methods

Indexed Allocation

24 / 29

Indexed Allocation

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Indexed Allocation



Secondary Storage Allocation Methods

Indexed Allocation

Bring all pointers together in an index block (cf., page table)
I For each file f,

index_block(f)—block where f’s index block is stored
each index block b has pointers to f’s blocks

index(b, i)—the ith entry in index block b
I To read data at position p in file f

I block =

index(index_block(f), p / BLOCK_SIZE)

I offset =

p % BLOCK_SIZE

Class Exercise

What are the problems with this approach?

25 / 29

Indexed Allocation

Bring all pointers together in an index block (cf., page table)
I For each file f,

index_block(f)—block where f’s index block is stored
each index block b has pointers to f’s blocks

index(b, i)—the ith entry in index block b
I To read data at position p in file f

I block =

index(index_block(f), p / BLOCK_SIZE)

I offset =

p % BLOCK_SIZE

Class Exercise

What are the problems with this approach?20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Indexed Allocation

Random and sequential access are okay; you have dynamic access
without external fragmentation. But the index block is overhead, and
limits on the size of the index block also limit the sizes of files.



Secondary Storage Allocation Methods

Indexed Allocation

Bring all pointers together in an index block (cf., page table)
I For each file f,

index_block(f)—block where f’s index block is stored
each index block b has pointers to f’s blocks

index(b, i)—the ith entry in index block b
I To read data at position p in file f

I block = index(index_block(f), p / BLOCK_SIZE)
I offset = p % BLOCK_SIZE

Class Exercise

What are the problems with this approach?

25 / 29

Indexed Allocation

Bring all pointers together in an index block (cf., page table)
I For each file f,

index_block(f)—block where f’s index block is stored
each index block b has pointers to f’s blocks

index(b, i)—the ith entry in index block b
I To read data at position p in file f

I block = index(index_block(f), p / BLOCK_SIZE)
I offset = p % BLOCK_SIZE

Class Exercise

What are the problems with this approach?20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Indexed Allocation

Random and sequential access are okay; you have dynamic access
without external fragmentation. But the index block is overhead, and
limits on the size of the index block also limit the sizes of files.



Secondary Storage Allocation Methods

Combined Indexing

26 / 29

Combined Indexing

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Combined Indexing

This has long been the standard in Unix-like systems. But it’s not the
only way!



Secondary Storage Allocation Methods

Extents

Allocate file in chunks:
I For each file f,

extent_start(f,i)—block where chunk i begins
extent_len(f,i)—length of chunk i in blocks

I To read data at position p, in file f
I block =

find_block(p / BLOCK_SIZE, 0)

I offset =

p % BLOCK_SIZE

I Where find_block is defined as:
I find_block(b, i) = b + extent_start(f, i)

if b < extent_len(f, i)
I find_block(b, i) =

find_block(b - extent_len(f, i), i + 1)
otherwise

27 / 29

Extents

Allocate file in chunks:
I For each file f,

extent_start(f,i)—block where chunk i begins
extent_len(f,i)—length of chunk i in blocks

I To read data at position p, in file f
I block =

find_block(p / BLOCK_SIZE, 0)

I offset =

p % BLOCK_SIZE

I Where find_block is defined as:
I find_block(b, i) = b + extent_start(f, i)

if b < extent_len(f, i)
I find_block(b, i) =

find_block(b - extent_len(f, i), i + 1)
otherwise20

13
-0

5-
17

CS34
Secondary Storage

Allocation Methods
Extents



Secondary Storage Allocation Methods

Extents

Allocate file in chunks:
I For each file f,

extent_start(f,i)—block where chunk i begins
extent_len(f,i)—length of chunk i in blocks

I To read data at position p, in file f
I block = find_block(p / BLOCK_SIZE, 0)
I offset = p % BLOCK_SIZE

I Where find_block is defined as:
I find_block(b, i) = b + extent_start(f, i)

if b < extent_len(f, i)
I find_block(b, i) =

find_block(b - extent_len(f, i), i + 1)
otherwise

27 / 29

Extents

Allocate file in chunks:
I For each file f,

extent_start(f,i)—block where chunk i begins
extent_len(f,i)—length of chunk i in blocks

I To read data at position p, in file f
I block = find_block(p / BLOCK_SIZE, 0)
I offset = p % BLOCK_SIZE

I Where find_block is defined as:
I find_block(b, i) = b + extent_start(f, i)

if b < extent_len(f, i)
I find_block(b, i) =

find_block(b - extent_len(f, i), i + 1)
otherwise20

13
-0

5-
17

CS34
Secondary Storage

Allocation Methods
Extents



Secondary Storage Allocation Methods

Non-Contiguous Allocation Summary

All the techniques we’ve looked at
I Allow a file’s blocks to be scattered all over the disk
I Allow free space to be scattered all over the disk

So how are you going to know where the free space is?

28 / 29

Non-Contiguous Allocation Summary

All the techniques we’ve looked at
I Allow a file’s blocks to be scattered all over the disk
I Allow free space to be scattered all over the disk

So how are you going to know where the free space is?

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Non-Contiguous Allocation Summary

Desirable properties:

• Try to locate the file (or large pieces of the file) in the same region
of the disk

– Requires enough free space to be able to pick a region of the
disk that has chunks of space free

• Minimize head movement



Secondary Storage Allocation Methods

Free-Space Management—Bit Vector

Bit map for n blocks:

Class Exercise
Compare against a linked representation. . .

29 / 29

Free-Space Management—Bit Vector

Bit map for n blocks:

Class Exercise
Compare against a linked representation. . .

20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Free-Space Management—Bit Vector


	Working Sets
	Allocation Policies
	Thrashing

	Secondary Storage
	Allocation Methods


