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Formal definition is “pages referenced in last k accesses.” Close
approximation is “pages referenced in last n ms.” Note that this is
pretty close to what the CLOCK algorithm does, except that other
processes can interfere. Which leads to. . .



Working Sets Allocation Policies

Local vs. Global

Whose pages do we take?

6 / 29

Local vs. Global

Whose pages do we take?

20
13

-0
5-

17

CS34
Working Sets

Allocation Policies
Local vs. Global



Working Sets Allocation Policies

Frame Allocation Policies

So far, we’ve examined paging without thinking about
processes—but what about processes?

I Each process needs a bare minimum number of pages (set
by hardware characteristics of machine)

I Frames need to be shared out fairly between processes
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I Each process can only take frames from itself

Class Exercise

What do you think?
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• Some processes use a lot of VM, but don’t access it often

• Some processes use a little VM, but access it often

• Not fair
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Local, Variable Allocation

Each program has a frame allocation
I Use working set measurements to adjust frame allocation

from time to time.
I Each process can only take frames from itself.

Class Exercise

What’s wrong with this policy?
I I.e., what assumptions are we making that could be wrong?

What should we do if the working sets of all processes are more
than the total number of frames available?
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Thrashing

Under local replacement policy, only problem process is affected
(usually)

I Can detect and swap out until can give bigger working set
I If can’t give big enough, might want to kill. . .

Under global replacement policy, whole machine can be brought
to its knees!

. . . But even under local policy, disk can become so busy that no
other work gets done!
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What properties does disk have that differentiate it from RAM?

What properties are similar?
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Disks—Properties

I Large array of logical blocks (cf., page frames)
I Block-based structure (partially) hidden in file APIs
I Logical block = smallest unit of transfer (cf., page size)
I Logical blocks mapped to disk sectors sequentially

I Block zero is first sector, first track outermost cylinder
I Mapping proceeds in order through:

I Sectors in track
I Tracks in cylinder
I Cylinders on disk

I Access is slow, but sequential access faster than random
I Disk space→ files (cf., memory→ processes)
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Secondary Storage Allocation Methods

Disk as One File

Like giving all memory to one process

I Entire disk used for one “file”
I File is seen as big stream of bytes
I Usually fixed size, writes overwrite old data
I To read data at position p,

I block =

p / BLOCK_SIZE

I offset =

p % BLOCK_SIZE

Class Exercise

What kind of performance can we expect?

When might such a design be useful?
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Random access is fast (as possible). Sequential is fast. Best for
special cases, such as databases, paging/swap files.
OS still has work to do, preserving illusion of byte stream of bytes
rather than discrete blocks.
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Dynamic Partitioning (aka Contiguous Allocation)

More than one file per disk; all space per file is contiguous

I Each file occupies set of contiguous blocks on disk
I For each file f:

I start_of(f)—block where f begins
I length_of(f)—current size of f

I To read data at position p in file f
I block =

start_of(f) + p / BLOCK_SIZE

I offset =

p % BLOCK_SIZE

Class Exercise

What kind of performance can we expect?

What’s missing? What problems can we expect?
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deleted. What about compaction? Files can’t grow unless there’s
empty space next to them.
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Linked Allocation

Make each file block point to next one:
I For each file f,

start_of(f)—block where f begins
each block, b, has a pointer (size PTR_SIZE), such that

next_block(b)—block that comes after b
I To read data at position p, in file f

I block =

find_block(start_of(f),
p / (BLOCK_SIZE − PTR_SIZE))

I offset =

p % (BLOCK_SIZE − PTR_SIZE)

Class Exercise

What kind of performance can we expect?
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Find_block is a linear search. No external fragmentation. Random
access is slow. Sequential access is okay (but not great.)
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Adding an end pointer makes appends much cheaper.
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Make each block in an array (fat) point to the next one block in
file

I For each file f,
start_of(f)—block where f begins
fat[b]—block that comes after b

I To read data at position p in file f
I block =

find_block(start_of(f), p / BLOCK_SIZE)

I offset =

p % BLOCK_SIZE

Class Exercise

What are the problems with this approach?
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Here, find_block is a list search through the FAT, which is stored in
memory: no (or few) extra disk accesses.
Problems: you still have essentially random allocation on the disk.
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each index block b has pointers to f’s blocks

index(b, i)—the ith entry in index block b
I To read data at position p in file f

I block =

index(index_block(f), p / BLOCK_SIZE)

I offset =

p % BLOCK_SIZE

Class Exercise

What are the problems with this approach?

25 / 29

Indexed Allocation

Bring all pointers together in an index block (cf., page table)
I For each file f,

index_block(f)—block where f’s index block is stored
each index block b has pointers to f’s blocks

index(b, i)—the ith entry in index block b
I To read data at position p in file f

I block =

index(index_block(f), p / BLOCK_SIZE)

I offset =

p % BLOCK_SIZE

Class Exercise

What are the problems with this approach?20
13

-0
5-

17

CS34
Secondary Storage

Allocation Methods
Indexed Allocation

Random and sequential access are okay; you have dynamic access
without external fragmentation. But the index block is overhead, and
limits on the size of the index block also limit the sizes of files.
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This has long been the standard in Unix-like systems. But it’s not the
only way!
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Extents

Allocate file in chunks:
I For each file f,

extent_start(f,i)—block where chunk i begins
extent_len(f,i)—length of chunk i in blocks

I To read data at position p, in file f
I block =

find_block(p / BLOCK_SIZE, 0)

I offset =

p % BLOCK_SIZE

I Where find_block is defined as:
I find_block(b, i) = b + extent_start(f, i)

if b < extent_len(f, i)
I find_block(b, i) =

find_block(b - extent_len(f, i), i + 1)
otherwise
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All the techniques we’ve looked at
I Allow a file’s blocks to be scattered all over the disk
I Allow free space to be scattered all over the disk

So how are you going to know where the free space is?
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Desirable properties:

• Try to locate the file (or large pieces of the file) in the same region
of the disk

– Requires enough free space to be able to pick a region of the
disk that has chunks of space free

• Minimize head movement
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