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These are file-size distributions on several machines. Note
similarities and differences. Also note it’s a log-log plot!



Allocation

Heuristics for Improving Contiguousness

Contiguous allocation is good:
I Dramatically improves sequential access
I Helps random access (why?)

What steps can we take to assist in allocating files contiguously?
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Allocation

Region-Based Approaches

Divide disk into regions (sometimes called cylinder groups), each
with own free list

I Unless a file is very large, try to keep all of it in same region
I Try to put all the files in a directory in same region
I Put different directories in different regions

Class Exercise

What assumptions are we making here?

What kinds of locality are we expecting?
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Overall Organization

Layers in Action—Low-Level Filesystem

At low level, files don’t have names/directories, just numbers (e.g.,
inode number)

We need mapping from human-friendly names to these numbers
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Overall Organization

Layers in Action—High-level Filesystem

Build on lower-level layer
I Provide mapping from filenames/directories to inode numbers

In Unix,
I Directories are files
I Directories only map filename→ inode number
I All other metadata is included in file’s inode

Class Exercise

If we store data (permissions, ownerships, etc.) in inode, doesn’t
this violate the two-layer scheme?
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Overall Organization

Race Conditions—Class Exercises

Suppose we create a file, and write “Hello World” to it
I Which on-disk structures will be modified?
I In what order should we modify those structures—and why?
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What to Store Metadata

Metadata—What to Store About Files. . .

What information should operating system store about files?
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What to Store Metadata

Creator—Who Made the File?

We might want to store
I The user
I Their role
I The program

(Windows & MacOS 9 track creator; Unix conflates ownership with
creator)
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What to Store Metadata

Ownership—Who the File Belongs To

Unix stores two ownership attributes:
I User
I Group

where groups are system-wide groups of users.

A different operating system might do things differently. . .
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What to Store Metadata

Access Rights

A user might be allowed one or more of the following access rights
to a file:

I Existence check
I Execute
I Read
I Append
I General update (write)
I Change access rights
I Delete
I Change ownership
I Anything else?
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Windows NT provides “Take ownership.” Why do they do that?



What to Store Metadata

Access—Who Can Access the File

Vanilla Unix provides access based on
I User
I Group
I Other

where owner can set protection for each individually

Other options include:
I List of users allowed (“Access Control List”—ACL)
I List of groups
I List of programs
I List of roles
I Sensitivity labels
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What to Store Metadata

Watchdogs

Let files/directories declare a program as their guardian
I Maximum flexibility
I Slower performance
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What to Store Metadata

Access Information

When the file was
I Created
I Data modified
I Metadata modified
I Data read
I Metadata read
I Anything else?

and by whom

We might want to have just information for most recent access, or
we might want to keep a log of all accesses, perhaps with rollback
information
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What to Store Metadata

File Types

What kind of file it is:
I Executable
I Internal format (object file, TIFF image, Rich Text, . . . )
I Logical records (fixed or variable size)
I File type for OS

I Lockable
I Has ACL or watchdog

I File organization
I Sequential
I Indexed
I Random
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See next slide for discussion of the Unix philosophy.



What to Store Metadata

File Types (cont.)

Often file name and contents can supplement file types provided
by OS, but

I Not always elegant
I Not always efficient

Class Exercise

Unix only provides simple (byte stream + seek) file organizations.
Why? Is this choice good or bad?
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In the past, operating systems provided many different file types, and
many different file organizations. But,

• Inflexible

• Complicated the operating system

Unix stores minimal file-type information. This follows the “worse is
better” philosophy. It also has the serendipitous effect of allowing
unexpected usages (e.g., grep through binaries or even a raw disk,
or dd on a plain file).



What to Store Metadata

Other. . .

Various other information
I Version
I Dependencies
I Expected size
I Number of links
I Provenance

Alternatively. . .
I cvs/svn/darcs/git (or similar) can provide version control
I make can manage dependencies
I . . . ?
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What to Store Directories

Directories

Why have ’em?
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• Convenience for users:

– Names allow user control, rather than machine control, of file
identifiers

– Logical grouping of files

• More efficient

• Many-to-one mapping (one file, many names)



What to Store Directories

Directories—Single Level
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• Non-hierarchical

• Simple

• Inflexible:

– Naming problems
– Grouping problems

• Inefficient search



What to Store Directories

Directories—Tree Structured
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What to Store Directories

Directories—DAG Structured

Class Exercise

What are the advantages and disadvantages of this approach?
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Advantages:

• Lets user set up convenient paths to things

• Eases sharing

• Why not?

Disadvantages:

• What does “..” mean?

• Users can manage to confuse themselves

Does Unix allow this? Did original Unix?



What to Store Directories

Directories—Graph Structured

Class Exercise

What are the advantages and disadvantages here?
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Advantages:

• Complete generality and flexibility

Disadvantages:

• Users can confuse themselves

• .. becomes almost meaningless

• Possiblity of disconnected subgraphs (if reference counting is used)
or accidental wiping out of complete subtrees (if proper garbage
collection)
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