
CS 134:
Operating Systems

File System Design Choices

1 / 23

CS 134:
Operating Systems

File System Design Choices

20
12

-1
2-

06

CS34



Overview

Allocation

Overall Organization

What to Store
Metadata
Directories

2 / 23

Overview

Allocation

Overall Organization

What to Store
Metadata
Directories

20
12

-1
2-

06

CS34

Overview



Allocation

File Sizes

3 / 23

File Sizes

20
12

-1
2-

06

CS34
Allocation

File Sizes

These are file-size distributions on several machines. Note
similarities and differences. Also note it’s a log-log plot!



Allocation

Heuristics for Improving Contiguousness

Contiguous allocation is good:
I Dramatically improves sequential access
I Helps random access (why?)

What steps can we take to assist in allocating files contiguously?

4 / 23

Heuristics for Improving Contiguousness

Contiguous allocation is good:
I Dramatically improves sequential access
I Helps random access (why?)

What steps can we take to assist in allocating files contiguously?

20
12

-1
2-

06

CS34
Allocation

Heuristics for Improving Contiguousness



Allocation

Region-Based Approaches

Divide disk into regions (sometimes called cylinder groups), each
with own free list

I Unless a file is very large, try to keep all of it in same region
I Try to put all the files in a directory in same region
I Put different directories in different regions

Class Exercise

What assumptions are we making here?

What kinds of locality are we expecting?

5 / 23

Region-Based Approaches

Divide disk into regions (sometimes called cylinder groups), each
with own free list

I Unless a file is very large, try to keep all of it in same region
I Try to put all the files in a directory in same region
I Put different directories in different regions

Class Exercise

What assumptions are we making here?

What kinds of locality are we expecting?20
12

-1
2-

06

CS34
Allocation

Region-Based Approaches



Overall Organization

Layers in Action—Low-Level Filesystem

At low level, files don’t have names/directories, just numbers (e.g.,
inode number)

We need mapping from human-friendly names to these numbers

6 / 23

Layers in Action—Low-Level Filesystem

At low level, files don’t have names/directories, just numbers (e.g.,
inode number)

We need mapping from human-friendly names to these numbers

20
12

-1
2-

06

CS34
Overall Organization

Layers in Action—Low-Level Filesystem



Overall Organization

Layers in Action—High-level Filesystem

Build on lower-level layer
I Provide mapping from filenames/directories to inode numbers

In Unix,
I Directories are files
I Directories only map filename→ inode number
I All other metadata is included in file’s inode

Class Exercise

If we store data (permissions, ownerships, etc.) in inode, doesn’t
this violate the two-layer scheme?

7 / 23

Layers in Action—High-level Filesystem

Build on lower-level layer
I Provide mapping from filenames/directories to inode numbers

In Unix,
I Directories are files
I Directories only map filename→ inode number
I All other metadata is included in file’s inode

Class Exercise

If we store data (permissions, ownerships, etc.) in inode, doesn’t
this violate the two-layer scheme?20

12
-1

2-
06

CS34
Overall Organization

Layers in Action—High-level Filesystem



Overall Organization

Race Conditions—Class Exercises

Suppose we create a file, and write “Hello World” to it
I Which on-disk structures will be modified?
I In what order should we modify those structures—and why?

8 / 23

Race Conditions—Class Exercises

Suppose we create a file, and write “Hello World” to it
I Which on-disk structures will be modified?
I In what order should we modify those structures—and why?

20
12

-1
2-

06

CS34
Overall Organization

Race Conditions—Class Exercises



What to Store Metadata

Metadata—What to Store About Files. . .

What information should operating system store about files?

9 / 23

Metadata—What to Store About Files. . .

What information should operating system store about files?

20
12

-1
2-

06

CS34
What to Store

Metadata
Metadata—What to Store About Files. . .



What to Store Metadata

Creator—Who Made the File?

We might want to store
I The user
I Their role
I The program

(Windows & MacOS 9 track creator; Unix conflates ownership with
creator)

10 / 23

Creator—Who Made the File?

We might want to store
I The user
I Their role
I The program

(Windows & MacOS 9 track creator; Unix conflates ownership with
creator)

20
12

-1
2-

06

CS34
What to Store

Metadata
Creator—Who Made the File?



What to Store Metadata

Ownership—Who the File Belongs To

Unix stores two ownership attributes:
I User
I Group

where groups are system-wide groups of users.

A different operating system might do things differently. . .

11 / 23

Ownership—Who the File Belongs To

Unix stores two ownership attributes:
I User
I Group

where groups are system-wide groups of users.

A different operating system might do things differently. . .

20
12

-1
2-

06

CS34
What to Store

Metadata
Ownership—Who the File Belongs To



What to Store Metadata

Access Rights

A user might be allowed one or more of the following access rights
to a file:

I Existence check
I Execute
I Read
I Append
I General update (write)
I Change access rights
I Delete
I Change ownership
I Anything else?

12 / 23

Access Rights

A user might be allowed one or more of the following access rights
to a file:

I Existence check
I Execute
I Read
I Append
I General update (write)
I Change access rights
I Delete
I Change ownership
I Anything else?20

12
-1

2-
06

CS34
What to Store

Metadata
Access Rights

Windows NT provides “Take ownership.” Why do they do that?



What to Store Metadata

Access—Who Can Access the File

Vanilla Unix provides access based on
I User
I Group
I Other

where owner can set protection for each individually

Other options include:
I List of users allowed (“Access Control List”—ACL)
I List of groups
I List of programs
I List of roles
I Sensitivity labels

13 / 23

Access—Who Can Access the File

Vanilla Unix provides access based on
I User
I Group
I Other

where owner can set protection for each individually

Other options include:
I List of users allowed (“Access Control List”—ACL)
I List of groups
I List of programs
I List of roles
I Sensitivity labels

20
12

-1
2-

06

CS34
What to Store

Metadata
Access—Who Can Access the File



What to Store Metadata

Watchdogs

Let files/directories declare a program as their guardian
I Maximum flexibility
I Slower performance

14 / 23

Watchdogs

Let files/directories declare a program as their guardian
I Maximum flexibility
I Slower performance

20
12

-1
2-

06

CS34
What to Store

Metadata
Watchdogs



What to Store Metadata

Access Information

When the file was
I Created
I Data modified
I Metadata modified
I Data read
I Metadata read
I Anything else?

and by whom

We might want to have just information for most recent access, or
we might want to keep a log of all accesses, perhaps with rollback
information

15 / 23

Access Information

When the file was
I Created
I Data modified
I Metadata modified
I Data read
I Metadata read
I Anything else?

and by whom

We might want to have just information for most recent access, or
we might want to keep a log of all accesses, perhaps with rollback
information

20
12

-1
2-

06

CS34
What to Store

Metadata
Access Information



What to Store Metadata

File Types

What kind of file it is:
I Executable
I Internal format (object file, TIFF image, Rich Text, . . . )
I Logical records (fixed or variable size)
I File type for OS

I Lockable
I Has ACL or watchdog

I File organization
I Sequential
I Indexed
I Random

16 / 23

File Types

What kind of file it is:
I Executable
I Internal format (object file, TIFF image, Rich Text, . . . )
I Logical records (fixed or variable size)
I File type for OS

I Lockable
I Has ACL or watchdog

I File organization
I Sequential
I Indexed
I Random20

12
-1

2-
06

CS34
What to Store

Metadata
File Types

See next slide for discussion of the Unix philosophy.



What to Store Metadata

File Types (cont.)

Often file name and contents can supplement file types provided
by OS, but

I Not always elegant
I Not always efficient

Class Exercise

Unix only provides simple (byte stream + seek) file organizations.
Why? Is this choice good or bad?

17 / 23

File Types (cont.)

Often file name and contents can supplement file types provided
by OS, but

I Not always elegant
I Not always efficient

Class Exercise

Unix only provides simple (byte stream + seek) file organizations.
Why? Is this choice good or bad?

20
12

-1
2-

06

CS34
What to Store

Metadata
File Types (cont.)

In the past, operating systems provided many different file types, and
many different file organizations. But,

• Inflexible

• Complicated the operating system

Unix stores minimal file-type information. This follows the “worse is
better” philosophy. It also has the serendipitous effect of allowing
unexpected usages (e.g., grep through binaries or even a raw disk,
or dd on a plain file).



What to Store Metadata

Other. . .

Various other information
I Version
I Dependencies
I Expected size
I Number of links
I Provenance

Alternatively. . .
I cvs/svn/darcs/git (or similar) can provide version control
I make can manage dependencies
I . . . ?

18 / 23

Other. . .

Various other information
I Version
I Dependencies
I Expected size
I Number of links
I Provenance

Alternatively. . .
I cvs/svn/darcs/git (or similar) can provide version control
I make can manage dependencies
I . . . ?20

12
-1

2-
06

CS34
What to Store

Metadata
Other. . .



What to Store Directories

Directories

Why have ’em?

19 / 23

Directories

Why have ’em?

20
12

-1
2-

06

CS34
What to Store

Directories
Directories

• Convenience for users:

– Names allow user control, rather than machine control, of file
identifiers

– Logical grouping of files

• More efficient

• Many-to-one mapping (one file, many names)



What to Store Directories

Directories—Single Level

20 / 23

Directories—Single Level

20
12

-1
2-

06

CS34
What to Store

Directories
Directories—Single Level

• Non-hierarchical

• Simple

• Inflexible:

– Naming problems
– Grouping problems

• Inefficient search



What to Store Directories

Directories—Tree Structured

21 / 23

Directories—Tree Structured

20
12

-1
2-

06

CS34
What to Store

Directories
Directories—Tree Structured



What to Store Directories

Directories—DAG Structured

Class Exercise

What are the advantages and disadvantages of this approach?

22 / 23

Directories—DAG Structured

Class Exercise

What are the advantages and disadvantages of this approach?20
12

-1
2-

06

CS34
What to Store

Directories
Directories—DAG Structured

Advantages:

• Lets user set up convenient paths to things

• Eases sharing

• Why not?

Disadvantages:

• What does “..” mean?

• Users can manage to confuse themselves

Does Unix allow this? Did original Unix?



What to Store Directories

Directories—Graph Structured

Class Exercise

What are the advantages and disadvantages here?

23 / 23

Directories—Graph Structured

Class Exercise

What are the advantages and disadvantages here?

20
12

-1
2-

06

CS34
What to Store

Directories
Directories—Graph Structured

Advantages:

• Complete generality and flexibility

Disadvantages:

• Users can confuse themselves

• .. becomes almost meaningless

• Possiblity of disconnected subgraphs (if reference counting is used)
or accidental wiping out of complete subtrees (if proper garbage
collection)


	Allocation
	Overall Organization
	What to Store
	Metadata
	Directories


