
CS 134:
Operating Systems

I/O Hardware

1 / 23

CS 134:
Operating Systems

I/O Hardware

20
13

-0
5-

17

CS34

Overview

Hardware
Devices
Communication Methods

Software
Low-Level
Mid-Level
Upper-Level

Unusual Devices

2 / 23

Overview

Hardware
Devices
Communication Methods

Software
Low-Level
Mid-Level
Upper-Level

Unusual Devices20
13

-0
5-

17

CS34

Overview

Hardware Devices

Classifying Devices

What is an I/O device?

Unix divides devices into block and character types.

Class Exercise
How would you define these?

Class Exercise
How would you classify devices?

3 / 23

Classifying Devices

What is an I/O device?

Unix divides devices into block and character types.

Class Exercise
How would you define these?

Class Exercise
How would you classify devices?

20
13

-0
5-

17

CS34
Hardware

Devices
Classifying Devices

A block device can be defined as one that can only be accessed in
block-sized units, or as one that has a fixed size. A character device
is anything else. Are these sensible definitions?
Besides the obvious devices, what about clocks and
memory-mapped screens? What about GPUs? Are they even
devices? You can give them a list of polygons to display. . . but you
can also give them password-cracking code to execute. Are there any
other “weird” example?

Hardware Devices

Sample Devices

I/O devices span wide range of types:

I Keyboard
I Mouse
I Disk
I 24x80 CRT
I Bit-mapped screen
I GPU
I LED
I Analog-to-digital converter

(ADC)
I Digital-to-analog converter

(DAC)

I Pushbutton
I On/off switch
I One-bit digital output (e.g.,

on-off output switch)
I Rotary encoder
I Network interface card

(NIC)
I Robot arm
I TV receiver
I . . .

4 / 23

Sample Devices

I/O devices span wide range of types:

I Keyboard
I Mouse
I Disk
I 24x80 CRT
I Bit-mapped screen
I GPU
I LED
I Analog-to-digital converter

(ADC)
I Digital-to-analog converter

(DAC)

I Pushbutton
I On/off switch
I One-bit digital output (e.g.,

on-off output switch)
I Rotary encoder
I Network interface card

(NIC)
I Robot arm
I TV receiver
I . . .

20
13

-0
5-

17

CS34
Hardware

Devices
Sample Devices

Hardware Devices

Controllers

Controller is electronics that helps manage the I/O device.

Simplest: ADCs, DACs, and some digital lines
Common: Fairly fancy electronics to hide low-level messiness
Most complex: own CPU with millions of lines of code

Class Exercise
Give examples of situations where each design would be
desirable.

5 / 23

Controllers

Controller is electronics that helps manage the I/O device.

Simplest: ADCs, DACs, and some digital lines
Common: Fairly fancy electronics to hide low-level messiness
Most complex: own CPU with millions of lines of code

Class Exercise
Give examples of situations where each design would be
desirable.

20
13

-0
5-

17

CS34
Hardware

Devices
Controllers

Hardware Communication Methods

Talking to Devices

The CPU must have a way to pass information to and from an I/O
device. Three approaches:

1. Special instructions, e.g. IN %eax, $80

2. Memory mapping (device pretends to be memory)
3. Direct memory access (DMA)—device bypasses CPU entirely

6 / 23

Talking to Devices

The CPU must have a way to pass information to and from an I/O
device. Three approaches:

1. Special instructions, e.g. IN %eax, $80

2. Memory mapping (device pretends to be memory)
3. Direct memory access (DMA)—device bypasses CPU entirely

20
13

-0
5-

17

CS34
Hardware

Communication Methods
Talking to Devices

Hardware Communication Methods

Special Instructions

Typically two instructions, transferring to/from registers

+ Limited address space⇒Simple hardware decoding
+ Devices can live on own bus
+ Plays well with caches
+ Instructions can be limited to supervisor mode
− Limits flexibility in access instructions
− Hard to program in C
− Limited address space⇒Can’t access bitmapped screen
− Can’t give direct access to user programs
− No large transfers (sans DMA)

7 / 23

Special Instructions

Typically two instructions, transferring to/from registers

+ Limited address space⇒Simple hardware decoding
+ Devices can live on own bus
+ Plays well with caches
+ Instructions can be limited to supervisor mode
− Limits flexibility in access instructions
− Hard to program in C
− Limited address space⇒Can’t access bitmapped screen
− Can’t give direct access to user programs
− No large transfers (sans DMA)20

13
-0

5-
17

CS34
Hardware

Communication Methods
Special Instructions

Hardware Communication Methods

Memory Mapping

Part of physical address space is decoded by I/O devices

+ No special instructions⇒Simpler CPU implementation
+ High-level languages possible
+ Supports “large” I/O devices
+ No arbitrary limits on number/size of devices
+ VM protection can allow user direct device access
− Devices must snoop memory bus or have own memory space
− Cache must be disabled
− Must decode all 32/48/64 address bits even if only one device

register
− Possibly word-only access

8 / 23

Memory Mapping

Part of physical address space is decoded by I/O devices

+ No special instructions⇒Simpler CPU implementation
+ High-level languages possible
+ Supports “large” I/O devices
+ No arbitrary limits on number/size of devices
+ VM protection can allow user direct device access
− Devices must snoop memory bus or have own memory space
− Cache must be disabled
− Must decode all 32/48/64 address bits even if only one device

register
− Possibly word-only access20

13
-0

5-
17

CS34
Hardware

Communication Methods
Memory Mapping

Hardware Communication Methods

Direct Memory Access

Device digs into memory on its own.

Originally invented to let disks transfer data at high speed, but now
can read/interpret arbitrary “command packets.”

+ Ultra-high-speed access
+ CPU can pay attention to other things
+ Arbitrarily complex commands (e.g., disk scheduling)
− Controller is vastly more complex
− Driver code can be more complex as well
− Still needs special instruction or memory mapping to initiate
− Can potentially hog bus for long periods

9 / 23

Direct Memory Access

Device digs into memory on its own.

Originally invented to let disks transfer data at high speed, but now
can read/interpret arbitrary “command packets.”

+ Ultra-high-speed access
+ CPU can pay attention to other things
+ Arbitrarily complex commands (e.g., disk scheduling)
− Controller is vastly more complex
− Driver code can be more complex as well
− Still needs special instruction or memory mapping to initiate
− Can potentially hog bus for long periods20

13
-0

5-
17

CS34
Hardware

Communication Methods
Direct Memory Access

Hardware Communication Methods

I/O Registers

I/O devices typically have one or more registers of 8–32 bits:
I Reading and writing have side effects
I Reading doesn’t give what was written
I Some bits are remembered internally by device

10 / 23

I/O Registers

I/O devices typically have one or more registers of 8–32 bits:
I Reading and writing have side effects
I Reading doesn’t give what was written
I Some bits are remembered internally by device

20
13

-0
5-

17

CS34
Hardware

Communication Methods
I/O Registers

Hardware Communication Methods

Example of I/O Registers—8251 UART

Status Register—Read:

DSR 0 FE OE PE TxE RxR TxR

Status Register—Write:

0 0 RTS RST BRK RxE DTR TxE

Data Register—Read/Write:

27 26 25 24 23 22 21 20

11 / 23

Example of I/O Registers—8251 UART

Status Register—Read:

DSR 0 FE OE PE TxE RxR TxR

Status Register—Write:

0 0 RTS RST BRK RxE DTR TxE

Data Register—Read/Write:

27 26 25 24 23 22 21 20

20
13

-0
5-

17

CS34
Hardware

Communication Methods
Example of I/O Registers—8251 UART

FE: Framing error; OE: Overflow; PE: Parity; TxE: Transmitter Empty;
TxR: Ready (can be ready w/o being empty). BRK is transient;
RxE/TxE are enable bits. Data register reads only on RxR and resets
RxR. Data register write transmits and resets TxR.

Hardware Communication Methods

I/O Completion

Always need way to detect I/O completion:
I Set bit in register and let CPU poll for it, or
I Interrupt CPU

Class Exercise
What are advantages and disadvantages of each approach?

12 / 23

I/O Completion

Always need way to detect I/O completion:
I Set bit in register and let CPU poll for it, or
I Interrupt CPU

Class Exercise
What are advantages and disadvantages of each approach?

20
13

-0
5-

17

CS34
Hardware

Communication Methods
I/O Completion

Software Low-Level

Interrupt Handlers

Hardware must (at a minimum):
I Disable further interrupts (of equal/lower priority)
I Save some state
I Set kernel mode
I Start execution at a known place

Software must:
I Save further state
I Set kernel context
I “Acknowledge” interrupt so device drops request
I Take appropriate action
I Return to interrupted code (or switch to new process)

13 / 23

Interrupt Handlers

Hardware must (at a minimum):
I Disable further interrupts (of equal/lower priority)
I Save some state
I Set kernel mode
I Start execution at a known place

Software must:
I Save further state
I Set kernel context
I “Acknowledge” interrupt so device drops request
I Take appropriate action
I Return to interrupted code (or switch to new process)20

13
-0

5-
17

CS34
Software

Low-Level
Interrupt Handlers

Software Low-Level

Device Drivers

Device-access code can run in kernel or user mode (but usually
kernel).

Driver must abstract control registers to OS’s read/write model:
I Validate request
I Wait for idle
I Issue commands through control registers
I Possibly block waiting for interrupt
I Possibly invoke scheduler

14 / 23

Device Drivers

Device-access code can run in kernel or user mode (but usually
kernel).

Driver must abstract control registers to OS’s read/write model:
I Validate request
I Wait for idle
I Issue commands through control registers
I Possibly block waiting for interrupt
I Possibly invoke scheduler

20
13

-0
5-

17

CS34
Software

Low-Level
Device Drivers

Software Mid-Level

Device Abstractions

Many devices have common characteristics; e.g., different brands
of disk or printer

Makes sense to abstract common parts

Resulting structure is uniform driver sitting above specific one

15 / 23

Device Abstractions

Many devices have common characteristics; e.g., different brands
of disk or printer

Makes sense to abstract common parts

Resulting structure is uniform driver sitting above specific one

20
13

-0
5-

17

CS34
Software

Mid-Level
Device Abstractions

Software Mid-Level

Buffering

Desirable to collect input before delivering it, accept output before
device swallows it

Kernel buffers allow both features

Wise to have extra buffers to allow overlapped I/O

Many devices need buffers, so common kernel mechanism makes
sense

16 / 23

Buffering

Desirable to collect input before delivering it, accept output before
device swallows it

Kernel buffers allow both features

Wise to have extra buffers to allow overlapped I/O

Many devices need buffers, so common kernel mechanism makes
sense

20
13

-0
5-

17

CS34
Software

Mid-Level
Buffering

Software Mid-Level

Error Handling

Best option on errors: retry and hide from upper levels

Alternative: return error code to application & let it handle

Worst option: ask user what to do (user usually has insufficient
information to make wise decision)

17 / 23

Error Handling

Best option on errors: retry and hide from upper levels

Alternative: return error code to application & let it handle

Worst option: ask user what to do (user usually has insufficient
information to make wise decision)

20
13

-0
5-

17

CS34
Software

Mid-Level
Error Handling

Software Upper-Level

Abstractions

Some devices need more than just read and write:
I Disks need filesystems
I Networks cards need routing and connection management
I Graphics displays need windowing
I Keyboard needs editing
I Mouse needs pointing to particular windows
I . . .

OS must provide sensible interposition/interface

18 / 23

Abstractions

Some devices need more than just read and write:
I Disks need filesystems
I Networks cards need routing and connection management
I Graphics displays need windowing
I Keyboard needs editing
I Mouse needs pointing to particular windows
I . . .

OS must provide sensible interposition/interface20
13

-0
5-

17

CS34
Software

Upper-Level

Abstractions

Software Upper-Level

API

User-space applications need standardized interface
I Open, close, read, write, lseek
I What to do about unusual cases like “eject CD”?

ioctl

Sometimes need even higher-level abstractions
I Mount/unmount
I Printer spooling

19 / 23

API

User-space applications need standardized interface
I Open, close, read, write, lseek
I What to do about unusual cases like “eject CD”?

ioctl

Sometimes need even higher-level abstractions
I Mount/unmount
I Printer spooling

20
13

-0
5-

17

CS34
Software

Upper-Level

API

Software Upper-Level

API

User-space applications need standardized interface
I Open, close, read, write, lseek
I What to do about unusual cases like “eject CD”? ioctl

Sometimes need even higher-level abstractions
I Mount/unmount
I Printer spooling

19 / 23

API

User-space applications need standardized interface
I Open, close, read, write, lseek
I What to do about unusual cases like “eject CD”? ioctl

Sometimes need even higher-level abstractions
I Mount/unmount
I Printer spooling

20
13

-0
5-

17

CS34
Software

Upper-Level

API

Software Upper-Level

Windowing Systems

Modern GUIs need window management:
I Overlapping windows
I High-performance drawing
I “Events” (keystrokes and mouse clicks) delivered to selected

windows
I Window manager to decide which window is on top and which

is active

In Unix, all of this is implemented as a network-connected server
that runs the display, mouse, and keyboard: the X Window
System

I Applications are clients that connect to the server and ask for
windows to be drawn, keystrokes delivered, etc.

20 / 23

Windowing Systems

Modern GUIs need window management:
I Overlapping windows
I High-performance drawing
I “Events” (keystrokes and mouse clicks) delivered to selected

windows
I Window manager to decide which window is on top and which

is active

In Unix, all of this is implemented as a network-connected server
that runs the display, mouse, and keyboard: the X Window
System

I Applications are clients that connect to the server and ask for
windows to be drawn, keystrokes delivered, etc.

20
13

-0
5-

17

CS34
Software

Upper-Level

Windowing Systems

Unusual Devices

Clocks

Clocks come in two flavors:
1. Read/write interface (read gives time of day, write sets it)
2. Pure interrupt interface (interrupt every so often)

Typically, first kind is used only at boot time, then periodic
interrupts maintain TOD and force process switches

All clocks drift; NTP (Network Time Protocol) allows
synchronization to GPS or standardized atomic clocks

21 / 23

Clocks

Clocks come in two flavors:
1. Read/write interface (read gives time of day, write sets it)
2. Pure interrupt interface (interrupt every so often)

Typically, first kind is used only at boot time, then periodic
interrupts maintain TOD and force process switches

All clocks drift; NTP (Network Time Protocol) allows
synchronization to GPS or standardized atomic clocks

20
13

-0
5-

17

CS34
Unusual Devices

Clocks

Unusual Devices

Keyboards

Unlike all other devices, humans can’t reliably generate input

Keyboard must allow line editing to compensate
I Typically supported in driver
I Problem: some programs have own line-editing needs
I Solution: raw (as opposed to cooked!) mode
I Cooked mode also echoes input

22 / 23

Keyboards

Unlike all other devices, humans can’t reliably generate input

Keyboard must allow line editing to compensate
I Typically supported in driver
I Problem: some programs have own line-editing needs
I Solution: raw (as opposed to cooked!) mode
I Cooked mode also echoes input

20
13

-0
5-

17

CS34
Unusual Devices

Keyboards

Unusual Devices

Mice

Mouse generates periodic updates: ∆x ,∆y ,buttons

Problem: to whom do mouse events go?

Solution: Send to windowing system, let it decide which window is
interested

23 / 23

Mice

Mouse generates periodic updates: ∆x ,∆y ,buttons

Problem: to whom do mouse events go?

Solution: Send to windowing system, let it decide which window is
interested

20
13

-0
5-

17

CS34
Unusual Devices

Mice

Unusual Devices

Mice

Mouse generates periodic updates: ∆x ,∆y ,buttons

Problem: to whom do mouse events go?

Solution: Send to windowing system, let it decide which window is
interested

23 / 23

Mice

Mouse generates periodic updates: ∆x ,∆y ,buttons

Problem: to whom do mouse events go?

Solution: Send to windowing system, let it decide which window is
interested

20
13

-0
5-

17

CS34
Unusual Devices

Mice

	Hardware
	Devices
	Communication Methods

	Software
	Low-Level
	Mid-Level
	Upper-Level

	Unusual Devices

