
CS 134:
Operating Systems

I/O Hardware

1 / 15

CS 134:
Operating Systems

I/O Hardware

20
13

-0
5-

17

CS34



Overview

Patch Peer Review

Drivers
Low-Level
Mid-Level
Upper-Level

Unusual Devices

2 / 15

Overview

Patch Peer Review

Drivers
Low-Level
Mid-Level
Upper-Level

Unusual Devices20
13

-0
5-

17

CS34

Overview



Patch Peer Review

Comments on a Few Comments

Multiple execvs run out of memory

free_kpages is a no-op in dumbvm.c

splhigh prevents interrupts in file operations

mi_switch requires high spl—and drops it

Negative process exit codes don’t work

Exit codes are 8 bits, unsigned

#define foo(x) do {...} while (0)
is weird, obscure, and nonstandard

It’s a standard C idiom because. . .

3 / 15

Comments on a Few Comments

Multiple execvs run out of memory

free_kpages is a no-op in dumbvm.c

splhigh prevents interrupts in file operations

mi_switch requires high spl—and drops it

Negative process exit codes don’t work

Exit codes are 8 bits, unsigned

#define foo(x) do {...} while (0)
is weird, obscure, and nonstandard

It’s a standard C idiom because. . .

20
13

-0
5-

17

CS34
Patch Peer Review

Comments on a Few Comments



Patch Peer Review

Comments on a Few Comments

Multiple execvs run out of memory
free_kpages is a no-op in dumbvm.c

splhigh prevents interrupts in file operations

mi_switch requires high spl—and drops it

Negative process exit codes don’t work

Exit codes are 8 bits, unsigned

#define foo(x) do {...} while (0)
is weird, obscure, and nonstandard

It’s a standard C idiom because. . .

3 / 15

Comments on a Few Comments

Multiple execvs run out of memory
free_kpages is a no-op in dumbvm.c

splhigh prevents interrupts in file operations

mi_switch requires high spl—and drops it

Negative process exit codes don’t work

Exit codes are 8 bits, unsigned

#define foo(x) do {...} while (0)
is weird, obscure, and nonstandard

It’s a standard C idiom because. . .

20
13

-0
5-

17

CS34
Patch Peer Review

Comments on a Few Comments



Patch Peer Review

Comments on a Few Comments

Multiple execvs run out of memory
free_kpages is a no-op in dumbvm.c

splhigh prevents interrupts in file operations
mi_switch requires high spl—and drops it

Negative process exit codes don’t work

Exit codes are 8 bits, unsigned

#define foo(x) do {...} while (0)
is weird, obscure, and nonstandard

It’s a standard C idiom because. . .

3 / 15

Comments on a Few Comments

Multiple execvs run out of memory
free_kpages is a no-op in dumbvm.c

splhigh prevents interrupts in file operations
mi_switch requires high spl—and drops it

Negative process exit codes don’t work

Exit codes are 8 bits, unsigned

#define foo(x) do {...} while (0)
is weird, obscure, and nonstandard

It’s a standard C idiom because. . .

20
13

-0
5-

17

CS34
Patch Peer Review

Comments on a Few Comments



Patch Peer Review

Comments on a Few Comments

Multiple execvs run out of memory
free_kpages is a no-op in dumbvm.c

splhigh prevents interrupts in file operations
mi_switch requires high spl—and drops it

Negative process exit codes don’t work
Exit codes are 8 bits, unsigned

#define foo(x) do {...} while (0)
is weird, obscure, and nonstandard

It’s a standard C idiom because. . .

3 / 15

Comments on a Few Comments

Multiple execvs run out of memory
free_kpages is a no-op in dumbvm.c

splhigh prevents interrupts in file operations
mi_switch requires high spl—and drops it

Negative process exit codes don’t work
Exit codes are 8 bits, unsigned

#define foo(x) do {...} while (0)
is weird, obscure, and nonstandard

It’s a standard C idiom because. . .

20
13

-0
5-

17

CS34
Patch Peer Review

Comments on a Few Comments



Patch Peer Review

Comments on a Few Comments

Multiple execvs run out of memory
free_kpages is a no-op in dumbvm.c

splhigh prevents interrupts in file operations
mi_switch requires high spl—and drops it

Negative process exit codes don’t work
Exit codes are 8 bits, unsigned

#define foo(x) do {...} while (0)
is weird, obscure, and nonstandard

It’s a standard C idiom because. . .

3 / 15

Comments on a Few Comments

Multiple execvs run out of memory
free_kpages is a no-op in dumbvm.c

splhigh prevents interrupts in file operations
mi_switch requires high spl—and drops it

Negative process exit codes don’t work
Exit codes are 8 bits, unsigned

#define foo(x) do {...} while (0)
is weird, obscure, and nonstandard

It’s a standard C idiom because. . .20
13

-0
5-

17

CS34
Patch Peer Review

Comments on a Few Comments



Patch Peer Review

Numeric Evaluations

Group Clarity Concise Fit Correct Docs Total
hertz 4.78 4.67 4.67 4.00 4.78 22.90
fewer 4.67 4.33 4.67 2.67 4.33 20.67
dwarf 4.33 4.33 5.00 2.67 4.00 20.33
yank 5.00 4.33 4.33 2.33 4.00 19.99
radon 3.67 4.33 3.67 4.00 2.67 18.34
race 4.00 4.33 4.67 2.00 3.33 18.33
wilt 4.33 4.33 4.00 1.33 3.33 17.32
bides 3.67 3.00 3.00 2.67 4.00 16.34
cue 3.67 4.00 2.67 1.67 4.00 16.01
diner 4.33 4.67 4.00 1.33 1.33 15.66

4 / 15

Numeric Evaluations

Group Clarity Concise Fit Correct Docs Total
hertz 4.78 4.67 4.67 4.00 4.78 22.90
fewer 4.67 4.33 4.67 2.67 4.33 20.67
dwarf 4.33 4.33 5.00 2.67 4.00 20.33
yank 5.00 4.33 4.33 2.33 4.00 19.99
radon 3.67 4.33 3.67 4.00 2.67 18.34
race 4.00 4.33 4.67 2.00 3.33 18.33
wilt 4.33 4.33 4.00 1.33 3.33 17.32
bides 3.67 3.00 3.00 2.67 4.00 16.34
cue 3.67 4.00 2.67 1.67 4.00 16.01
diner 4.33 4.67 4.00 1.33 1.33 15.6620

13
-0

5-
17

CS34
Patch Peer Review

Numeric Evaluations



Patch Peer Review

Ranking

Rank Group
1.00 hertz
2.00 radon
2.00 yank
2.33 fewer
3.00 bides
3.00 race
3.33 dwarf
3.67 cue
3.67 diner
4.00 wilt

5 / 15

Ranking

Rank Group
1.00 hertz
2.00 radon
2.00 yank
2.33 fewer
3.00 bides
3.00 race
3.33 dwarf
3.67 cue
3.67 diner
4.00 wilt20

13
-0

5-
17

CS34
Patch Peer Review

Ranking



Drivers Low-Level

Device Drivers

Device-access code can run in kernel or user mode (but usually
kernel).

Driver must abstract control registers to OS’s read/write model:
I Validate request
I Wait for idle
I Issue commands through control registers
I Possibly block waiting for interrupt
I Possibly invoke scheduler

6 / 15

Device Drivers

Device-access code can run in kernel or user mode (but usually
kernel).

Driver must abstract control registers to OS’s read/write model:
I Validate request
I Wait for idle
I Issue commands through control registers
I Possibly block waiting for interrupt
I Possibly invoke scheduler

20
13

-0
5-

17

CS34
Drivers

Low-Level
Device Drivers



Drivers Mid-Level

Device Abstractions

Many devices have common characteristics; e.g., different brands
of disk or printer

Makes sense to abstract common parts

Resulting structure is uniform driver sitting above specific one

7 / 15

Device Abstractions

Many devices have common characteristics; e.g., different brands
of disk or printer

Makes sense to abstract common parts

Resulting structure is uniform driver sitting above specific one

20
13

-0
5-

17

CS34
Drivers

Mid-Level
Device Abstractions



Drivers Mid-Level

Buffering

Desirable to collect input before delivering it, accept output before
device swallows it

Kernel buffers allow both features

Wise to have extra buffers to allow overlapped I/O

Many devices need buffers, so common kernel mechanism makes
sense

8 / 15

Buffering

Desirable to collect input before delivering it, accept output before
device swallows it

Kernel buffers allow both features

Wise to have extra buffers to allow overlapped I/O

Many devices need buffers, so common kernel mechanism makes
sense

20
13

-0
5-

17

CS34
Drivers

Mid-Level
Buffering



Drivers Mid-Level

Error Handling

Best option on errors: retry and hide from upper levels

Alternative: return error code to application & let it handle

Worst option: ask user what to do (user usually has insufficient
information to make wise decision)

9 / 15

Error Handling

Best option on errors: retry and hide from upper levels

Alternative: return error code to application & let it handle

Worst option: ask user what to do (user usually has insufficient
information to make wise decision)

20
13

-0
5-

17

CS34
Drivers

Mid-Level
Error Handling



Drivers Upper-Level

Abstractions

Some devices need more than just read and write:
I Disks need filesystems
I Network cards need routing and connection management
I Graphics displays need windowing
I Keyboard needs editing
I Mouse needs pointing to particular windows
I . . .

OS must provide sensible interposition/interface

10 / 15

Abstractions

Some devices need more than just read and write:
I Disks need filesystems
I Network cards need routing and connection management
I Graphics displays need windowing
I Keyboard needs editing
I Mouse needs pointing to particular windows
I . . .

OS must provide sensible interposition/interface20
13

-0
5-

17

CS34
Drivers

Upper-Level

Abstractions



Drivers Upper-Level

API

User-space applications need standardized interface
I Open, close, read, write, lseek
I What to do about unusual cases like “eject CD”?

ioctl

Sometimes need even higher-level abstractions
I Mount/unmount
I Printer spooling

11 / 15

API

User-space applications need standardized interface
I Open, close, read, write, lseek
I What to do about unusual cases like “eject CD”?

ioctl

Sometimes need even higher-level abstractions
I Mount/unmount
I Printer spooling

20
13

-0
5-

17

CS34
Drivers

Upper-Level

API



Drivers Upper-Level

API

User-space applications need standardized interface
I Open, close, read, write, lseek
I What to do about unusual cases like “eject CD”? ioctl

Sometimes need even higher-level abstractions
I Mount/unmount
I Printer spooling

11 / 15

API

User-space applications need standardized interface
I Open, close, read, write, lseek
I What to do about unusual cases like “eject CD”? ioctl

Sometimes need even higher-level abstractions
I Mount/unmount
I Printer spooling

20
13

-0
5-

17

CS34
Drivers

Upper-Level

API



Drivers Upper-Level

Windowing Systems

Modern GUIs need window management:
I Overlapping windows
I High-performance drawing
I “Events” (keystrokes and mouse clicks) delivered to selected

windows
I Window manager to decide which window is on top and which

is active

In Unix, all of this is implemented as a network-connected server
that runs the display, mouse, and keyboard: the X Window
System

I Applications are clients that connect to the server and ask for
windows to be drawn, keystrokes delivered, etc.

12 / 15

Windowing Systems

Modern GUIs need window management:
I Overlapping windows
I High-performance drawing
I “Events” (keystrokes and mouse clicks) delivered to selected

windows
I Window manager to decide which window is on top and which

is active

In Unix, all of this is implemented as a network-connected server
that runs the display, mouse, and keyboard: the X Window
System

I Applications are clients that connect to the server and ask for
windows to be drawn, keystrokes delivered, etc.

20
13

-0
5-

17

CS34
Drivers

Upper-Level

Windowing Systems



Unusual Devices

Clocks

Clocks come in two flavors:
1. Read/write interface (read gives time of day, write sets it)
2. Pure interrupt interface (interrupt every so often)

Typically, first kind is used only at boot time, then periodic
interrupts maintain TOD and force process switches

All clocks drift; NTP (Network Time Protocol) allows
synchronization to GPS or standardized atomic clocks

13 / 15

Clocks

Clocks come in two flavors:
1. Read/write interface (read gives time of day, write sets it)
2. Pure interrupt interface (interrupt every so often)

Typically, first kind is used only at boot time, then periodic
interrupts maintain TOD and force process switches

All clocks drift; NTP (Network Time Protocol) allows
synchronization to GPS or standardized atomic clocks

20
13

-0
5-

17

CS34
Unusual Devices

Clocks



Unusual Devices

Keyboards

Unlike all other devices, humans can’t reliably generate input

Keyboard must allow line editing to compensate
I Typically supported in driver
I Problem: some programs have own line-editing needs
I Solution: raw (as opposed to cooked!) mode
I Cooked mode also echoes input

14 / 15

Keyboards

Unlike all other devices, humans can’t reliably generate input

Keyboard must allow line editing to compensate
I Typically supported in driver
I Problem: some programs have own line-editing needs
I Solution: raw (as opposed to cooked!) mode
I Cooked mode also echoes input

20
13

-0
5-

17

CS34
Unusual Devices

Keyboards



Unusual Devices

Mice

Mouse generates periodic updates: ∆x ,∆y ,buttons

Problem: to whom do mouse events go?

Solution: Send to windowing system, let it decide which window is
interested

15 / 15

Mice

Mouse generates periodic updates: ∆x ,∆y ,buttons

Problem: to whom do mouse events go?

Solution: Send to windowing system, let it decide which window is
interested

20
13

-0
5-

17

CS34
Unusual Devices

Mice



Unusual Devices

Mice

Mouse generates periodic updates: ∆x ,∆y ,buttons

Problem: to whom do mouse events go?

Solution: Send to windowing system, let it decide which window is
interested

15 / 15

Mice

Mouse generates periodic updates: ∆x ,∆y ,buttons

Problem: to whom do mouse events go?

Solution: Send to windowing system, let it decide which window is
interested

20
13

-0
5-

17

CS34
Unusual Devices

Mice


	Patch Peer Review
	Drivers
	Low-Level
	Mid-Level
	Upper-Level

	Unusual Devices

