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Promises

Promises Made by Disks (etc.)

1. I am a linear array of fixed-size blocks1

2. You can access any block fairly quickly, regardless of previous accesses
3. You can read or write any block independently of any other
4. Block writes are atomic: all or nothing
5. If you give me bits, I will keep them and give them back later

1MRAM and PCRAM promise byte-size blocks—which turns out to cause problems!
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Promises

Promises Made by (Most) Filesystems

1. I am a structured collection of data
2. My indexing is more complex than just numbers
3. I keep track of data as aggregates (e.g., files)
4. Aggregates can be of (somewhat) arbitrary size, and usually you can extend an

aggregate
5. You can read and write at the block or byte level
6. You can find the data you gave me
7. I will give you back the bits you wrote
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Kernel Structure VFS Interface
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Kernel Structure VFS Interface
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Kernel Structure VFS Interface

VFS Interface Functions

The list is long and the interface is complex. Here are a few sample functions:
lookup Find directory entry

getattr Return file’s attributes; roughly Unix stat
mkdir Create a directory
create Create a file (empty)
rename Works on files and directories; normally atomic
open Open a file (possibly creating it)
read Read bytes

Important: A particular file system doesn’t have to implement all operations!
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Kernel Structure FUSE

FUSE Structure

FUSE (Filesystem in USEr space) works sort of like NFS:
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(via special FUSE protocol)
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Kernel Structure FUSE

FUSE Clients

I Must implement a minimum subset of VFS protocol
I What happens internally is hugely flexible

I Serve requests from internal memory
I Serve them programmatically (e.g, reads return

√
writes)

I Feed them on to some other filesystem, local or remote
I Implement own filesystem on local disk or inside a local file

I Samples widely available:
hellofs Programmatic “hello, world”
sshfs Remote access via ssh

Yacufs Makes ogg look like mp3, etc.
Wikipediafs Wikipedia is a filesystem!

rsbep ECC for your files
unpackfs Look inside tar, zip, or gzip archives
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Kernel Structure FUSE

The FUSE Interface (1)

FUSE is somewhat like VFS, but can be stateless. Full list of operations (2 slides):
*getattr Get file attributes or properties
*readdir Read directory entries

*open Open file
*read Read bytes
write Write bytes
mkdir Make directory
rmdir Remove directory
mknod Make device node or FIFO

readlink Read symlink destination
symlink Create symbolic link

link Create hard link
unlink Remove link or file
rename Rename directory or file
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Kernel Structure FUSE

The FUSE Interface (2)

FUSE operation list, continued:
truncate Delete tail of file (or extend file)
access Check access permissions
chmod Change permissions
chown Change ownership

utimens Update access and modify times
statfs Get filesystem statistics

release Done with file (kind of like close)
fsync Flush file data to stable storage

getxattr Get extended attributes
setxattr Set extended attributes
listxattr List extended attributes
removexattr Remove extended attributes
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Kernel Structure FUSE

A Minimal FUSE Filesystem

The “hello, world” example filesystem:

getattr If path is “/” or “/hello”, return canned result; else fail
readdir Return three canned results: “.”, “..”, “hello”

open Fail unless path is “/hello” and open is for read
read If path is “/hello” and read is within string, return bytes requested. Otherwise

fail.

97 lines of well-formatted (but uncommented) code!

Oh, and you can do it in Python or Perl. . .
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Kernel Structure FUSE

What Is FUSE Good For?

I Quick filesystem development
I Filesystems that need user-level services
I Extending existing filesystems
I Trying out radical ideas (e.g., SQL interface to filesystem)
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Kernel Structure FUSE

What is FUSE Bad At?

I Performance is necessarily worse than in-kernel systems
I But with work, can come very close

I Don’t use when top performance needed
I But can use if you need early performance measurements on your cool new idea
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Filesystem Design Basics

What a Filesystem Must Provide

I Unix has had big effect on filesystem design
I To succeed today, must support the POSIX interface:

I Named files (buckets of bytes)
I Hierarchical directory trees
I Long file names
I Ownership and permissions

I Many ways to accomplish this goal
I Today we’ll look at single-disk filesystems

14 / 23



Filesystem Design Basics

Disk Partitioning

I For various bad reasons, disks are logically divided into partitions
I Table inside cylinder 0 tells OS where boundaries are
I OS makes it look like multiple disks to higher levels
I Early computers had no BIOS, so booting just read block 0 (“boot block”) of disk 0

I Block 0 had enough code to find rest of kernel & read it in
I Even today, block 0 is reserved for boot block (Master Boot Record)
I Original scheme had (small) partition table inside MBR

I Partition contents are up to filesystem

15 / 23



Filesystem Design Basics

Mounting

A partition contains a filesystem. How to access it?

Windows approach: partition gets special name, file syntax allows specifying partition
I E.g., C: (hard drive), E: (CD-ROM)

Unix approach: partition is mounted over some directory
I “Root” partition is mounted on /

I User files might live in /home

I OS hides boundaries so can’t tell if /home/geoff/ is on root or separate partition
I Can nest arbitrarily
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Filesystem Design Structure

Basic Filesystem Structure

Any (single-disk) filesystem can be divided into five parts:
1. “Superblock” at well-known location
2. “Free list(s)” to track unallocated space & data structures
3. Directories that tell where to find other files and directories
4. “Root directory” findable from superblock
5. Metadata for each file or directory:

I Name
I How to find contents
I Possibly other useful information
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Filesystem Design Structure

The Superblock

I Must be findable when FS is first accessed (“mounted”)
I Only practical approach: have well-known location (e.g., block 2)
I Everything is up to designer, but usually has:

I “Magic number” for identification
I Checksum for validity
I Size of FS (redundant with partition size, but convenient)
I Location of root directory
I Location of metadata (or first metadata)
I Parameters of disk and of FS structure (e.g., blocks per cylinder, how things are spread

across disk)
I Location of free list
I Bookkeeping data (e.g., date last mounted or checked)
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Filesystem Design Structure

The Free List

I Usually one of simplest data structures in filesystem
I Popular approaches:

I Special file holding all free blocks
I Linked list of blocks
I “Chunky” list of blocks
I Bitmap
I List of extents (contiguous groups of blocks identified by start & length)
I B-tree or fancier structure
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Filesystem Design Structure

Directories

I Requirement: associate name with something usable for locating file’s attributes &
data

I Simplest approach: array of structures, each of which has name, attributes, pointer(s)
to where data is stored

I Makes directories big ⇒ skipping unwanted entries is expensive
I Puts “how to find” information far from file & makes it expensive to access
I Can’t support hard links & certain other nice features

I Better: associative map of pairs (name, id-number) where id-number tells where to
find rest of metadata about file

I From Unix, traditionally referred to as i-node number
I Inode (from “index node”) can be array or complex structure
I Every directory must also have “.” and “..” (or equivalent)
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Filesystem Design Structure

The Root Directory

I This part is easy: on any sensible FS it’s identical to any other except for being easily
findable

I “..” must be special, since you can’t go up from root
I Exception: if filesystem is mounted under a subdirectory, going up makes sense
I OS special-cases that one internally; FS never sees

21 / 23



Filesystem Design Structure

Metadata About Files and Directories

I Most is just a struct of useful information
I Under Unix, almost precisely what stat(2) returns
I Type, permissions, owner, group, size in bytes, three timestamps

I Fun part is “how to find the data itself”
I Desirable properties of a good scheme:

I Cheap for small files, which are common
I Supports very large files
I Efficient random access to large files
I Lets OS know when blocks are contiguous (i.e., cheap to read sequentially)
I Easy to return blocks to free list

I Can’t be array of block numbers, since inode usually fixed-size
I Various schemes; for example, could give root of B-tree, or first of linked list of block

numbers
I Can be useful to use extents & try to have sequences of blocks
I Can use hybrid scheme where first few blocks listed in inode, remainder found elsewhere
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Filesystem Design Final Thoughts

Final Thoughts

I Optimal design depends on workload
I Read vs. write frequency
I Sequential vs. random access
I File-size distribution
I Long- vs. short-lived files
I Proportion of files to directories
I Directory size
I Spinning disk vs. SSD
I . . .

I There is no perfect filesystem!
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