
The Zettabyte File System

Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, Mark Shellenbaum

Jeff.Bonwick@sun.com

Abstract

In this paper we describe a new file system that
provides strong data integrity guarantees, simple
administration, and immense capacity. We show
that with a few changes to the traditional high-level
file system architecture — including a redesign of
the interface between the file system and volume
manager, pooled storage, a transactional copy-on-
write model, and self-validating checksums — we
can eliminate many drawbacks of traditional file
systems. We describe a general-purpose production-
quality file system based on our new architecture,
the Zettabyte File System (ZFS). Our new architec-
ture reduces implementation complexity, allows new
performance improvements, and provides several
useful new features almost as a side effect.

1 Introduction

Upon hearing about our work on ZFS, some people
appear to be genuinely surprised and ask, “Aren’t
local file systems a solved problem?” From this
question, we can deduce that the speaker has
probably never lost important files, run out of
space on a partition, attempted to boot with a
damaged root file system, needed to repartition a
disk, struggled with a volume manager, spent a
weekend adding new storage to a file server, tried
to grow or shrink a file system, mistyped something
in /etc/fstab, experienced silent data corruption,
or waited for fsck to finish. Some people are lucky
enough to never encounter these problems because
they are handled behind the scenes by system
administrators. Others accept such inconveniences
as inevitable in any file system. While the last
few decades of file system research have resulted
in a great deal of progress in performance and
recoverability, much room for improvement remains
in the areas of data integrity, availability, ease of
administration, and scalability.

Today’s storage environment is radically different
from that of the 1980s, yet many file systems
continue to adhere to design decisions made when
20 MB disks were considered big. Today, even a per-
sonal computer can easily accommodate 2 terabytes
of storage — that’s one ATA PCI card and eight
250 GB IDE disks, for a total cost of about $2500
(according to http://www.pricewatch.com) in late
2002 prices. Disk workloads have changed as a result
of aggressive caching of disk blocks in memory; since
reads can be satisfied by the cache but writes must
still go out to stable storage, write performance
now dominates overall performance[8, 16]. These
are only two of the changes that have occurred
over the last few decades, but they alone warrant a
reexamination of file system architecture from the
ground up.

We began the design of ZFS with the goals of
strong data integrity, simple administration, and
immense capacity. We decided to implement ZFS
from scratch, subject only to the constraint of
POSIX compliance. The resulting design includes
pooled storage, checksumming of all on-disk data,
transactional copy-on-write update of all blocks,
an object-based storage model, and a new divi-
sion of labor between the file system and volume
manager. ZFS turned out to be simpler to imple-
ment than many recent file systems, which is a
hopeful sign for the long-term viability of our design.

In this paper we examine current and upcoming
problems for file systems, describe our high level
design goals, and present the Zettabyte File System.
In Section 2 we explain the design principles ZFS
is based on. Section 3 gives an overview of the
implementation of ZFS. Section 4 demonstrates
ZFS in action. Section 5 discusses the design
tradeoffs we made. Section 6 reviews related work.
Section 7 describes future avenues for research,
and Section 8 summarizes the current status of ZFS.

2 Design principles

In this section we describe the design principles we
used to design ZFS, based on our goals of strong
data integrity, simple administration, and immense
capacity.

2.1 Simple administration

On most systems, partitioning a disk, creating a
logical device, and creating a new file system are
painful and slow operations. There isn’t much
pressure to simplify and speed up these kinds of
administrative tasks because they are relatively
uncommon and only performed by system admin-
istrators. At the same time though, mistakes or
accidents during these sorts of administrative tasks
are fairly common, easy to make, and can destroy
lots of data quickly[3]. The fact that these tasks are
relatively uncommon is actually an argument for
making them easier — almost no one is an expert at
these tasks precisely because they are so uncommon.
As more and more people become their own system
administrators, file systems programmers can no
longer assume a qualified professional is at the
keyboard (which is never an excuse for a painful
user interface in the first place).

Administration of storage should be simplified
and automated to a much greater degree. Manual
configuration of disk space should be unnecessary.
If manual configuration is desired, it should be easy,
intuitive, and quick. The administrator should be
able to add more storage space to an existing file
system without unmounting, locking, or otherwise
interrupting service on that file system. Removing
storage should be just as easy. Administering
storage space should be simple, fast, and difficult to
screw up.

The overall goal is to allow the administrator to
state his or her intent (“make a new file system”)
rather than the details to implement it (find unused
disk, partition it, write the on-disk format, etc.).
Adding more layers of automation, such as GUIs,
over existing file systems won’t solve the problem
because the file system is the unit of administration.
Hiding the division of files into file systems by
covering it up with more layers of user interface
won’t solve underlying problems like files that are
too large for their partitions, static allocation of
disk space to individual file systems or unavailable

data during file system repair.

2.2 Pooled storage

One of the most striking design principles in modern
file systems is the one-to-one association between
a file system and a particular storage device (or
portion thereof). Volume managers do virtualize
the underlying storage to some degree, but in
the end, a file system is still assigned to some
particular range of blocks of the logical storage
device. This is counterintuitive because a file
system is intended to virtualize physical storage,
and yet there remains a fixed binding between
a logical namespace and a specific device (logi-
cal or physical, they both look the same to the user).

To make the problem clearer, let’s look at the
analogous problem for main memory. Imagine that
every time an administrator added more memory
to a system, he or she had to run the “formatmem”
command to partition the new memory into chunks
and assign those chunks to applications. Admin-
istrators don’t have to do this because virtual
addressing and dynamic memory allocators take
care of it automatically.

Similarly, file systems should be decoupled from
physical storage in much the same way that vir-
tual memory decouples address spaces from memory
banks. Multiple file systems should be able to share
one pool of storage. Allocation should be moved out
of the file system and into a storage space alloca-
tor that parcels out permanent storage space from
a pool of storage devices as file systems request it.
Contrast the traditional volume approach in Fig-
ure 1 with the pooled storage approach in Figure 2.
Logical volumes are a small step in this direction,
but they still look like a range of bytes that must be
partitioned before use.

The interface between the file system and the
volume manager puts allocation on the wrong side
of the interface, making it difficult to grow and
shrink file systems, share space, or migrate live data.

2.3 Dynamic file system size

If a file system can only use space from its partition,
the system administrator must then predict (i.e.,
guess) the maximum future size of each file system

2

FS

Volume
(Virtual Disk)

FS

Volume
(Virtual Disk)

FS

Volume
(Virtual Disk)

No space sharing

Naming
and

storage
tightly
bound

Figure 1: Storage divided into volumes

FS FS FS

Storage Pool

Naming
and

storage
decoupled

All space shared

Figure 2: Pooled storage

at the time of its creation. Some file systems
solve this problem by providing programs to grow
and shrink file systems, but they only work under
certain circumstances, are slow, and must be run
by hand (rather than occurring automatically).
They also require a logical volume manager with
the capability to grow and shrink logical partitions.

Besides the out-of-space scenario, this also pre-
vents the creation of a new file system on a fully
partitioned disk.1 Most of the disk space may be
unused, but if no room is left for a new partition,
no new file systems may be created. While the
growth of disk space has made this limitation less
of a concern — users can afford to waste lots of
disk space because many systems aren’t using it
anyway[5] — partitioning of disk space remains an
administrative headache.

Once the storage used by a file system can grow
and shrink dynamically through the addition and
removal of devices, the next step is a file system
that can grow and shrink dynamically as users add
or remove data. This process should be entirely
automatic and should not require administrator
intervention. If desired, the administrator should be
able to set quotas and reservations on file systems
or groups of file systems in order to prevent unfair
usage of the storage pool.

Since file systems have no fixed size, it no longer
makes sense to statically allocate file system meta-
data at file system creation time. In any case,
administrators shouldn’t be burdened with a task
that the file system can perform automatically.
Instead, structures such as inodes2 should be
allocated and freed dynamically as files are created
and deleted.

2.4 Always consistent on-disk data

Most file systems today still allow the on-disk data
to be inconsistent in some way for varying periods
of time. If an unexpected crash or power cycle
happens while the on-disk state is inconsistent,
the file system will require some form of repair

1Some might wonder why multiple file systems sharing
pooled storage is preferable to one large growable file system.
Briefly, the file system is a useful point of administration (for
backup, mount, etc.) and provides fault isolation.

2An inode is the structure used by a file system to store
metadata associated with a file, such as its owner.

3

on the next boot. Besides FFS-style file systems
that depend on repair from fsck[13], metadata
logging file systems require a log replay[20], and soft
updates leave behind leaked blocks and inodes that
must be reclaimed[12]. Log-structured file systems
periodically create self-consistent checkpoints, but
the process of creating a checksum is too expensive
to happen frequently[16, 17].

To see why repair after booting isn’t an acceptable
approach to consistency, consider the common case
in which a bootloader reads the root file system in
order to find the files it needs to boot the kernel.
If log replay is needed in order to make the file
system consistent enough to find those files, then all
the recovery code must also be in the bootloader.
File systems using soft updates don’t have this
problem, but they still require repair activity after
boot to clean up leaked inodes and blocks[12].
Soft updates are also non-trivial to implement,
requiring “detailed information about the relation-
ship between cached pieces of data,”[18] roll-back
and roll-forward of parts of metadata, and careful
analysis of each file system operation to determine
the order that updates should appear on disk[12, 18].

The best way to avoid file system corruption due to
system panic or power loss is to keep the data on the
disk self-consistent at all times, as WAFL[8] does.
To do so, the file system needs a simple way to tran-
sition from one consistent on-disk state to another
without any window of time when the system could
crash and leave the on-disk data in an inconsistent
state. The implementation of this needs to be rel-
atively foolproof and general, so that programmers
can add new features and fix bugs without hav-
ing to think too hard about maintaining consistency.

2.5 Immense capacity

Many file systems in use today have 32-bit block ad-
dresses, and are usually limited to a few terabytes.
As we noted in the introduction, a commodity per-
sonal computer can easily hold several terabytes of
storage, so 32-bit block addresses are clearly already
too small. Some recently designed file systems use
64-bit addresses, which will limit them to around
16 exabytes (264 bytes = 16 EB). This seems like
a lot, but consider that one petabyte (250 bytes)
datasets are plausible today[7], and that storage
capacity is currently doubling approximately every
9–12 months[21]. Assuming that the rate of growth

remains the same, it takes only 14 more doublings
to get from 250 bytes to 264 bytes, so 16 EB datasets
might appear in only 10.5 years. The lifetime of
an average file system implementation is measured
in decades, so we decided to use 128-bit block
addresses.

File systems that want to handle 16 EB of data need
more than bigger block addresses, they also need
scalable algorithms for directory lookup, metadata
allocation, block allocation, I/O scheduling, and
all other routine3 operations. The on-disk format
deserves special attention to make sure it won’t
preclude scaling in some fundamental way.

It may seem too obvious to mention, but our new file
system shouldn’t depend on fsck to maintain on-
disk consistency. fsck, the file system checker that
scans the entire file system[10], has already fallen
out of favor in the research community[8, 9, 16, 20],
but many production file systems still rely on
fsck at some point in normal usage.4 O(data)
operations to repair the file system must be avoided
except in the face of data corruption caused by
unrecoverable physical media errors, administrator
error, or other sources of unexpected external havoc.

2.6 Error detection and correction

In the ideal world, disks never get corrupted,
hardware RAID never has bugs, and reads always
return the same data that was written. In the
real world, firmware has bugs too. Bugs in disk
controller firmware can result in a variety of errors,
including misdirected reads, misdirected writes, and
phantom writes.5 In addition to hardware failures,
file system corruption can be caused by software
or administrative errors, such as bugs in the disk
driver or turning the wrong partition into a swap de-
vice. Validation at the block interface level can only
catch a subset of the causes of file system corruption.

3“Routine” includes operations to recover from an unex-
pected system power cycle, or any other activity that occurs
on boot.

4For example, RedHat 8.0 supports ext3, which logs meta-
data operations and theoretically doesn’t need fsck, but when
booting a RedHat 8.0 system after an unexpected crash, the
init scripts offer the option of running fsck on the ext3 file
systems anyway. File systems using soft updates also still
require fsck to be run in the background to reclaim leaked
inodes and blocks[12].

5Phantom writes are when the disk reports that it wrote
the block but didn’t actually write it.

4

Traditionally, file systems have trusted the data read
in from disk. But if the file system doesn’t validate
data read in from disk, the consequences of these
errors can be anything from returning corrupted
data to a system panic. The file system should
validate data read in from disk in order to detect
many kinds of file system corruption (unfortunately,
it can’t detect those caused by file system bugs).
The file system should also automatically correct
corruption, if possible, by writing the correct block
back to the disk.

2.7 Integration of the volume manager

The traditional way to add features like mirroring
is to write a volume manager that exports a logical
block device that looks exactly like a physical block
device. The benefit of this approach is that any
file system can use any volume manager and no file
system code has to be changed. However, emulating
a regular block device has serious drawbacks: the
block interface destroys all semantic information,
so the volume manager ends up managing on-disk
consistency much more conservatively than it needs
to since it doesn’t know what the dependencies
between blocks are. It also doesn’t know which
blocks are allocated and which are free, so it must
assume that all blocks are in use and need to be
kept consistent and up-to-date. In general, the
volume manager can’t make any optimizations
based on knowledge of higher-level semantics.

Many file systems already come with their own
volume managers (VxFS and VxVM, XFS and
XLV, UFS and SVM). The performance and effi-
ciency of the entire storage software stack should
be improved by changing the interface between
the file system and volume manager to something
more useful than the block device interface. The
resulting solution should be lightweight enough
that it imposes virtually no performance penalty in
the case of a storage pool containing a single plain
device.

2.8 Excellent performance

Finally, performance should be excellent. Perfor-
mance and features are not mutually exclusive. By
necessity, we had to start from a clean slate with
ZFS, which allowed us to redesign or eliminate
crufty old interfaces accumulated over the last

few decades. One key aspect of performance is
the observation that file system performance is
increasingly dominated by write performance[16, 8].
In general, block allocation algorithms should favor
writes over reads, and individual small writes should
be grouped together into large sequential writes
rather than scattered over the disk.

3 The Zettabyte File System

The Zettabyte File System (ZFS) is a general pur-
pose file system based on the principles described
in the last section. ZFS is implemented on the
Solaris operating system and is intended for use on
everything from desktops to database servers. In
this section we give a high level overview of the ZFS
architecture. As we describe ZFS, we show how our
design decisions relate to the principles we outlined
in the last section.

3.1 Storage model

The most radical change introduced by ZFS is a re-
division of labor among the various parts of system
software. The traditional file system block diagram
looks something like the left side of Figure 3. The
device driver exports a block device interface to
the volume manager, the volume manager exports
another block device interface to the file system,
and the file system exports vnode operations6 to
the system call layer.

The ZFS block diagram is the right side of Figure 3.
Starting from the bottom, the device driver exports
a block device to the Storage Pool Allocator (SPA).
The SPA handles block allocation and I/O, and
exports virtually addressed, explicitly allocated
and freed blocks to the Data Management Unit
(DMU). The DMU turns the virtually addressed
blocks from the SPA into a transactional object
interface for the ZFS POSIX Layer (ZPL). Finally,
the ZPL implements a POSIX file system on top of
DMU objects, and exports vnode operations to the
system call layer.

The block diagrams are arranged so that roughly
equivalent functional blocks in the two models are

6Vnode operations are part of the VFS (Virtual File Sys-
tem interface), a generic interface between the operating sys-
tem and the file system. An example vnode operation is the
vop create() operation, which creates a new file.

5

System Call

File System

Volume Manager

Device Driver

VOP_MUMBLE()

< logical device, offset >

< physical device, offset >

Vnode
Interface

Block
Device

Interface

Block
Device

Interface

System Call

ZFS POSIX Layer (ZPL)

Data Management Unit (DMU)

Storage Pool Allocator (SPA)

Device Driver

VOP_MUMBLE()

< dataset, object, offset >

< data virtual address >

< physical device, offset >

Vnode
Interface

Object
Transaction
Interface

Data
Virtual
Addressing

Block
Device
Interface

Figure 3: Traditional file system block diagram (left), vs. the ZFS block diagram (right).

lined up with each other. Note that we have sepa-
rated the functionality of the file system component
into two distinct parts, the ZPL and the DMU. We
also replaced the block device interface between the
rough equivalents of the file system and the volume
manager with a virtually addressed block interface.

3.2 The Storage Pool Allocator

The Storage Pool Allocator (SPA) allocates blocks
from all the devices in a storage pool. One system
can have multiple storage pools, although most
systems will only need one pool. Unlike a volume
manager, the SPA does not present itself as a
logical block device. Instead, it presents itself as
an interface to allocate and free virtually addressed
blocks — basically, malloc() and free() for disk
space. We call the virtual addresses of disk blocks
data virtual addresses (DVAs). Using virtually
addressed blocks makes it easy to implement several
of our design principles. First, it allows dynamic
addition and removal of devices from the storage
pool without interrupting service. None of the
code above the SPA layer knows where a particular
block is physically located, so when a new device
is added, the SPA can immediately start allocating
new blocks from it without involving the rest of
the file system code. Likewise, when the user

requests the removal of a device, the SPA can move
allocated blocks off the disk by copying them to a
new location and changing its translation for the
blocks’ DVAs without notifying anyone else.

The SPA also simplifies administration. System
administrators no longer have to create logical
devices or partition the storage, they just tell the
SPA which devices to use. By default, each file
system can use as much storage as it needs from its
storage pool. If necessary, the administrator can set
quotas and reservations on file systems or groups of
file systems to control the maximum and minimum
amount of storage available to each.

The SPA has no limits that will be reached in the
next few decades. It uses 128-bit block addresses,
so each storage pool can address up to 256 billion
billion billion billion blocks and contain hundreds
of thousands of file systems.7 From the current
state of knowledge in physics, we feel confident that
128-bit addresses will be sufficient for at least a few
more decades.8

7The number of file systems is actually constrained by the
design of the operating system (e.g., the 32-bit dev t in the
stat structure returned by the stat(2) family of system calls)
rather than any limit in ZFS itself.

8Using quantum mechanics, Lloyd[11] calculates that a de-
vice operating at sub-nuclear energy levels (i.e., it’s still in

6

Figure 4: ZFS stores checksums in parent indirect
blocks; the root of the tree stores its checksum in itself.

3.2.1 Error detection and correction

To protect against data corruption, each block is
checksummed before it is written to disk. A block’s
checksum is stored in its parent indirect block
(see Figure 4). As we describe in more detail in
Section 3.3, all on-disk data and metadata is stored
in a tree of blocks, rooted at the überblock. The
überblock is the only block that stores its checksum
in itself. Keeping checksums in the parent of a
block separates the data from its checksum on
disk and makes simultaneous corruption of data
and checksum less likely. It makes the checksums
self-validating because each checksum is itself
checksummed by its parent block. Another benefit
is that the checksum doesn’t need to be read in
from a separate block, since the indirect block
was read in to get to the data in the first place.
The checksum function is a pluggable module; by
default the SPA uses 64-bit Fletcher checksums[6].
Checksums are verified whenever a block is read in
from disk and updated whenever a block is written
out to disk. Since all data in the pool, including all
metadata, is in the tree of blocks, everything ZFS
ever writes to disk is checksummed.

Checksums also allow data to be self-healing in
some circumstances. When the SPA reads in a block
from disk, it has a high probability of detecting any
data corruption. If the storage pool is mirrored,
the SPA can read the good copy of the data and
repair the damaged copy automatically (presuming
the storage media hasn’t totally malfunctioned).

the form of atoms) could store a maximum of 1025 bits/kg.
The minimum mass of a device capable of storing 2128 bytes
would be about 272 trillion kg; for comparison, the Empire
state building masses about 500 billion kg.

3.2.2 Virtual devices

The SPA also implements the usual services of a
volume manager: mirroring, striping, concatena-
tion, etc. We wanted to come up with a simple,
modular, and lightweight way of implementing ar-
bitrarily complex arrangements of mirrors, stripes,
concatenations, and whatever else we might think
of. Our solution was a building block approach:
small modular virtual device drivers called vdevs.
A vdev is a small set of routines implementing a
particular feature, like mirroring or striping. A
vdev has one or more children, which may be other
vdevs or normal device drivers. For example, a
mirror vdev takes a write request and sends it to all
of its children, but it sends a read request to only
one (randomly selected) child. Similarly, a stripe
vdev takes an I/O request, figures out which of its
children contains that particular block, and sends
the request to that child only. Most vdevs take
only about 100 lines of code to implement; this is
because on-disk consistency is maintained by the
DMU, rather than at the block allocation level.

Each storage pool contains one or more top-level
vdevs, each of which is a tree of vdevs of arbi-
trary depth. Each top-level vdev is created with
a single command using a simple nested descrip-
tion language. The syntax is best described with
an example: To make a pool containing a sin-
gle vdev that is a two-way mirror of /dev/dsk/a
and /dev/dsk/b, run the command “zpool create
mirror(/dev/dsk/a,/dev/dsk/b)”. For readabil-
ity, we also allow a more relaxed form of the syn-
tax when there is no ambiguity, e.g., “zpool create
mirror /dev/dsk/a /dev/dsk/b”. Figure 5 shows
an example of a possible vdev tree constructed by
an administrator who was forced to cobble together
100 GB of mirrored storage out of two 50 GB disks
and one 100 GB disk — hopefully an uncommon sit-
uation.

3.2.3 Block allocation strategy

The SPA allocates blocks in a round-robin fashion
from the top-level vdevs. A storage pool with
multiple top-level vdevs allows the SPA to use
dynamic striping9 to increase disk bandwidth.
Since a new block may be allocated from any of
the top-level vdevs, the SPA implements dynamic

9The administrator may also configure “static” striping if
desired.

7

mirror

concat disk

disk disk

50G 50G

100G

Figure 5: Example vdev with the description
mirror(concat(/dev/dsk/a,/dev/dsk/b),/dev/dsk/c)

where disks a and b are the 50 GB disks and disk c is
the 100 GB disk.

striping by spreading out writes across all available
top-level vdevs at whatever granularity is conve-
nient (remember, blocks are virtually addressed,
so the SPA don’t need a fixed stripe width to
calculate where a block is located). As a result,
reads also tend to spread out across all top-level
vdevs. When a new device is added to the stor-
age pool, the SPA immediately begins allocating
blocks from it, increasing the total disk band-
width without any further intervention (such as
creating a new stripe group) from the administrator.

The SPA uses a derivative of the slab allocator[2]
to allocate blocks. Storage is divided up into
metaslabs, which are in turn divided into blocks of
a particular size. We chose to use different sizes of
blocks rather than extents in part because extents
aren’t amenable to copy-on-write techniques and
because the performance benefits of extents are
achievable with a block-based file system[14]. For
good performance, a copy-on-write file system needs
to find big chunks of contiguous free space to write
new blocks to, and the slab allocator already has a
proven track record of efficiently preventing frag-
mentation of memory in the face of variable sized
allocations without requiring a defragmentation
thread. By contrast, log-structured file systems
require the creation of contiguous 512KB or 1MB
segments of free disk space[16, 17], and the overhead
of the segment cleaner that produced these segments
turned out to be quite significant in some cases[19]
(although recent work[22] has reduced the cleaning
load). Using the slab allocator allows us much more
freedom with our block allocation strategy.

3.3 The Data Management Unit

The next component of ZFS is the Data Manage-
ment Unit (DMU). The DMU consumes blocks from
the SPA and exports objects (flat files). Objects
live within the context of a particular dataset. A
dataset provides a private namespace for the objects
contained by the dataset. Objects are identified by
64-bit numbers, contain up to 264 bytes of data, and
can be created, destroyed, read, and written. Each
write to (or creation of or destruction of) a DMU
object is assigned to a particular transaction10 by
the caller.

The DMU keeps the on-disk data consistent at
all times by treating all blocks as copy-on-write.
All data in the pool is part of a tree of indirect
blocks, with the data blocks as the leaves of the
tree. The block at the root of the tree is called
the überblock. Whenever any part of a block is
written, a new block is allocated and the entire
modified block is copied into it. Since the indirect
block must be written in order to record the new
location of the data block, it must also be copied
to a new block. Newly written indirect blocks
“ripple” all the way up the tree to the überblock.
See Figures 6–8.

When the DMU gets to the überblock at the root
of the tree, it rewrites it in place, in effect switch-
ing atomically from the old tree of blocks to the
new tree of blocks. In case the rewrite does not
complete correctly, the überblock has an embedded
checksum that detects this form of failure, and the
DMU will read a backup überblock from another
location. Transactions are implemented by writing
out all the blocks involved and then rewriting the
überblock once for the entire transaction. For effi-
ciency, the DMU groups many transactions together,
so the überblock and other indirect blocks are only
rewritten once for many data block writes. The
threshold for deciding when to write out a group of
transactions is based on both time (each transaction
waiths a maximum of a few seconds) and amount of
changes built up.

The DMU fulfills several more of our design prin-
ciples. The transactional object-based interface
provides a simple and generic way for any file system

10A transaction is a group of changes with the guarantee
that either of all of the changes will complete (be visible on-
disk) or none of the changes will complete, even in the face
of hardware failure or system crash.

8

Figure 6: Copy-on-write the data block.

Figure 7: Copy-on-write the indirect blocks.

Figure 8: Rewrite the überblock in place.

implemented on top of it to keep its on-disk data
self-consistent. For example, if a file system needs
to delete a file, it would (1) start a transaction,
(2) remove the directory entry by removing it from
the directory’s object, free the object containing

the on-disk inode, and free the object containing
the file’s data, in any order, and (3) commit the
transaction.11 In ZFS, on-disk consistency is im-
plemented exactly once for all file system operations.

The DMU’s generic object interface also makes
dynamic allocation of metadata much easier for
a file system. When the file system needs a new
inode, it simply allocates a new object and writes
the inode data to the object. When it no longer
needs that inode, it destroys the object containing
it. The same goes for user data as well. The
DMU allocates and frees blocks from the SPA as
necessary to store the amount of data contained in
any particular object.

The DMU also helps simplify administration by
making file systems easy to create and destroy.
Each of the DMU’s objects lives in the context
of a dataset that can be created and destroyed
independently of other datasets. The ZPL imple-
ments an individual file system as a collection of
objects within a dataset which is part of a storage
pool. Many file systems can share the same storage,
without requiring the storage to be divided up
piecemeal beforehand or even requiring any file
system to know about any other file system, since
each gets its own private object number namespace.

3.4 The ZFS POSIX Layer

The ZFS POSIX Layer (ZPL) makes DMU objects
look like a POSIX file system with permissions and
all the other trimmings. Naturally, it implements
what has become the standard feature set for
POSIX-style file systems: mmap(), access control
lists, extended attributes, etc. The ZPL uses the
DMU’s object-based transactional interface to store
all of its data and metadata. Every change to the
on-disk data is carried out entirely in terms of
creating, destroying, and writing objects. Changes
to individual objects are grouped together into
transactions by the ZPL in such a way that the on-
disk structures are consistent when a transaction is
completed. Updates are atomic; as long as the ZPL
groups related changes into transactions correctly,
it will never see an inconsistent on-disk state (e.g.,
an inode with the wrong reference count), even in

11This is, of course, only one way to implement a file system
using DMU objects. For example, both the inode and the data
could be stored in the same DMU object.

9

the event of a crash.

Instead of using the mkfs program to create file
systems, the ZPL creates each new file system
itself. To do so, the ZPL creates and populates a
few DMU objects with the necessary information
(e.g., the inode for the root directory). This is a
constant-time operation, no matter how large the
file system will eventually grow. Overall, creating
a new file system is about as complicated and
resource-consuming as creating a new directory. In
ZFS, file systems are cheap.

The attentive reader will have realized that our
implementation of transactions will lose the last
few seconds of writes if the system unexpectedly
crashes. For applications where those seconds
matter (such as NFS servers), the ZPL includes an
intent log to record the activity since the last group
of transactions was committed. The intent log is
not necessary for on-disk consistency, only to re-
cover uncommitted writes and provide synchronous
semantics. Placing the intent log at the level of the
ZPL allows us to record entries in the more compact
form of “create the file ‘foo’ in the directory whose
inode is 27” rather than “set these blocks to these
values.” The intent log can log either to disk or to
NVRAM.

4 ZFS in action

All of this high-level architectural stuff is great,
but what does ZFS actually look like in practice?
In this section, we’ll use a transcript (slightly
edited for two-column format) of ZFS in action to
demonstrate three of the benefits we claim for ZFS:
simplified administration, virtualization of storage,
and detection and correction of data corruption.
First, we’ll create a storage pool and several ZFS
file systems. Next, we’ll add more storage to the
pool dynamically and show that the file systems
start using the new space immediately. Then
we’ll deliberately scribble garbage on one side of a
mirror while it’s in active use, and show that ZFS
automatically detects and corrects the resulting
data corruption.

First, let’s create a storage pool named “home” us-
ing a mirror of two disks:

zpool create home mirror /dev/dsk/c3t0d0s0 \

/dev/dsk/c5t0d0s0

Now, look at the pool we just created:

zpool info home

Pool size used avail capacity

home 80G 409M 80G 1%

Let’s create and mount several file systems, one for
each user’s home directory, using the “-c” or “create
new file system” option:

zfs mount -c home/user1 /export/home/user1

zfs mount -c home/user2 /export/home/user2

zfs mount -c home/user3 /export/home/user3

Now, verify that they’ve been created and mounted:

df -h -F zfs

Filesystem size used avail use% Mounted on

home/user1 80G 4K 80G 1% /export/home/user1

home/user2 80G 4K 80G 1% /export/home/user2

home/user3 80G 4K 80G 1% /export/home/user3

Notice that we just created several file systems with-
out making a partition for each one or running
newfs. Let’s add some new disks to the storage pool:

zpool add home mirror /dev/dsk/c3t1d0s0 \

/dev/dsk/c5t1d0s0

df -h -F zfs

Filesystem size used avail use% Mounted on

home/user1 160G 4K 160G 1% /export/home/user1

home/user2 160G 4K 160G 1% /export/home/user2

home/user3 160G 4K 160G 1% /export/home/user3

As you can see, the new space is now available to
all of the file systems.

Let’s copy some files into one of the file systems, then
simulate data corruption by writing random garbage
to one of the disks:

cp /usr/bin/v* /export/home/user1

dd if=/dev/urandom of=/dev/rdsk/c3t0d0s0 \

count=10000

10000+0 records in

10000+0 records out

Now, diff12 all of the files with the originals in
/usr/bin:

diff /export/home/user1/vacation /usr/bin/vacation

[...]

diff /export/home/user1/vsig /usr/bin/vsig

No corruption! Let’s look at some statistics to see
how many errors ZFS detected and repaired:

12Using a version of diff that works on binary files, of course.

10

zpool info -v home

I/O per sec I/O errors

vdev description read write found fixed

1 mirror(2,3) 0 0 82 82

2 /dev/dsk/c3t0d0s0 0 0 82 0

3 /dev/dsk/c5t0d0s0 0 0 0 0

4 mirror(5,6) 0 0 0 0

5 /dev/dsk/c3t1d0s0 0 0 0 0

6 /dev/dsk/c5t1d0s0 0 0 0 0

As you can see, 82 errors were originally found in the
first child disk. The child disk passed the error up
to the parent mirror vdev, which then reissued the
read request to its second child. The checksums on
the data returned by the second child were correct,
so the mirror vdev returned the good data and also
rewrote the bad copy of the data on the first child
(the “fixed” column in the output would be better
named “fixed by this vdev”).

5 Design tradeoffs

We chose to focus our design on data integrity,
recoverability and ease of administration, following
the lead of other systems researchers[15] calling for
a widening of focus in systems research from perfor-
mance alone to overall system availability. The last
two decades of file system research have taken file
systems from 4% disk bandwidth utilization[13] to
90–95% of raw performance on an array of striped
disks[20]. For file systems, good performance is no
longer a feature, it’s a requirement. As such, this
paper does not focus on the performance of ZFS,
but we will briefly review the effect of our design
decisions on performance-related issues as part of
our discussion on design tradeoffs in general.

Copy-on-write of every block provides always
consistent on-disk data, but it requires a much
smarter block allocation algorithm and may cause
nonintuitive out-of-space errors when the disk is
nearly full. At the same time, it allows us to write to
any unallocated block on disk, which gives us room
for many performance optimizations, including
coalescing many small random writes into one large
sequential write.

We traded some amount of performance in order
to checksum all on-disk data. This should be miti-
gated by today’s fast processors and by increasingly
common hardware support for encryption or check-
summing, which ZFS can easily take advantage of.
We believe that the advantages of checksums far
outweigh the costs; however, for users who trust

their disks,13 ZFS allows them to select cheaper
checksum functions or turn them off entirely. Even
the highest quality disks can’t detect adminis-
tration or software errors, so we still recommend
checksums to protect against errors such as acci-
dentally configuring the wrong disk as a swap device.

Checksums actually speed up ZFS in some cases.
They allow us to cheaply validate data read from
one side of a mirror without reading the other side.
When two mirror devices are out of sync, ZFS
knows which side is correct and can repair the bad
side of the mirror. Since ZFS knows which blocks of
a mirror are in use, it can add new sides to a mirror
by duplicating only the data in the allocated blocks,
rather than copying gigabytes of garbage from one
disk to another.

One tradeoff we did not make: sacrificing simplicity
of implementation for features. Because we were
starting from scratch, we could design in features
from the beginning rather than bolting them on
later. As a result, ZFS is simpler, rather than
more complex, than many of its predecessors. Any
comparison of ZFS with other file systems should
take into account the fact that ZFS includes the
functionality of a volume manager and reduces the
amount of user utility code necessary (through the
elimination of fsck,14 mkfs, and similar utilities).

As of this writing, ZFS is about 25,000 lines of
kernel code and 2,000 lines of user code, while
Solaris’s UFS and SVM (Solaris Volume Manager)
together are about 90,000 lines of kernel code and
105,000 lines of user code. ZFS provides more
functionality than UFS and SVM with about 1/7th
of the total lines of code. For comparison with
another file system which provides comparable
scalability and capacity, XFS (without its volume
manager or user utility code) was over 50,000 lines
of code in 1996[20].

6 Related work

The file system that has come closest to our design
principles, other than ZFS itself, is WAFL[8], the file
system used internally by Network Appliance’s NFS

13And their cables, I/O bridges, I/O busses, and device
drivers.

14We will provide a tool for recovering ZFS file systems that
have suffered damage, but it won’t resemble fsck except in
the most superficial way.

11

server appliances. WAFL, which stands for Write
Anywhere File Layout, was the first commercial
file system to use the copy-on-write tree of blocks
approach to file system consistency. Both WAFL
and Episode[4] store metadata in files. WAFL also
logs operations at the file system level rather than
the block level. ZFS differs from WAFL in its use of
pooled storage and the storage pool allocator, which
allows file systems to share storage without knowing
anything about the underlying layout of storage.
WAFL uses a checksum file to hold checksums for
all blocks, whereas ZFS’s checksums are in the
indirect blocks, making checksums self-validating
and eliminating an extra block read. Finally, ZFS
is a general purpose UNIX file system, while WAFL
is currently only used inside network appliances.

XFS and JFS dynamically allocate inodes[1, 20],
but don’t provide a generic object interface to
dynamically allocate other kinds of data. Episode
appears15 to allow multiple file systems (or “file-
sets” or “volumes”) to share one partition (an
“aggregate”), which is one step towards fully
shared, dynamically resizeable pooled storage
like ZFS provides. Although it doesn’t use true
pooled storage, WAFL deserves recognition for
its simple and reliable method of growing file
systems, since it only needs to grow its inode and
block allocation map files when more space is added.

As with any other file system, ZFS borrows many
techniques from databases, cryptography, and
other research areas. ZFS’s real contribution is
integrating all these techniques together in an
actual implementation of a general purpose POSIX
file system using pooled storage, transactional
copy-on-write of all blocks, an object-based storage
model, and self-validating checksums.

7 Future work

ZFS opens up a great number of possibilities.
Databases or NFS servers could use the DMU’s
transactional object interface directly. File systems
of all sorts are easily built on top of the DMU —
two of our team members implemented the first
usable prototype of the ZPL in only six weeks. The
zvol driver, a sparse volume emulator that uses a
DMU object as backing store, was implemented in

15Changes of terminology and seemingly conflicting descrip-
tions make us unsure we have interpreted the literature cor-
rectly.

a matter of days. Encryption at the block level will
be trivial to implement, once we have a solution
to the more difficult problem of a suitable key
management infrastructure. Now that file systems
are cheap and easy to create, they appear to be a
logical administrative unit for permissions, ACLs,
encryption, compression and more. ZFS supports
multiple block sizes, but our algorithm for choosing
a block size is in its infancy. We would like to auto-
matically detect the block size used by applications
(such as databases) and use the same block size
internally, in order to avoid read-modify-write of
file system blocks. Block allocation in general is an
area with many possibilities to explore.

8 Status

The implementation of ZFS began in January of
2002. The transcript in Section 4 was created
in October 2002, showing that we implemented
some of what appear to be the most extravagant
features of ZFS very early on. As of this writing,
ZFS implements all of the features described in
Sections 3.1–3.4 with the exception of removal of
devices from the storage pool, quotas and reserva-
tions, and the intent log. We plan to deliver all
these features plus snapshots in our first release of
ZFS, sometime in 2004.

9 Conclusion

Current file systems still suffer from a variety of
problems: complicated administration, poor data
integrity guarantees, and limited capacity. The
key architectural elements of ZFS that solve these
problems are pooled storage, the movement of block
allocation out of the file system and into the storage
pool allocator, an object-based storage model,
checksumming of all on-disk blocks, transactional
copy-on-write of all blocks, and 128-bit virtual
block addresses. Our implementation was relatively
simple, especially considering that we incorporate
all the functionality of a volume manager (mirror-
ing, etc.). ZFS sets an entirely new standard for
data integrity, capacity, and ease of administration
in file systems.

12

References

[1] Steve Best. How the journaled file system cuts
system restart times to the quick. http://www-
106.ibm.com/developerworks/linux/library/l-
jfs.html, January 2000.

[2] Jeff Bonwick. The slab allocator: An object-caching
kernel memory allocator. In Proceedings of the 1994
USENIX Summer Technical Conference, 1994.

[3] Aaron Brown and David A. Patterson. To err is
human. In Proceedings of the First Workshop on
Evaluating and Architecting System dependabilitY
(EASY ’01), 2001.

[4] Sailesh Chutani, Owen T. Anderson, Michael L.
Kazar, Bruce W. Leverett, W. Anthony Mason, and
Robert N. Sidebotham. The Episode file system. In
Proceedings of the 1992 USENIX Winter Technical
Conference, 1992.

[5] John R. Douceur and William J. Bolosky. A large-
scale study of file-system contents. In Proceedings of
the International Conference on Measurement and
Modeling of Computer Systems, 1999.

[6] John G. Fletcher. An arithmetic checksum for serial
transmissions. IEEE Transactions on Communica-
tions, COM-30(1):247–252, 1982.

[7] Andrew Hanushevsky and Marcia Nowark. Pur-
suit of a scalable high performance multi-petabyte
database. In IEEE Symposium on Mass Storage
Systems, 1999.

[8] Dave Hitz, James Lau, and Michael Malcolm. File
system design for an NFS file server appliance. In
Proceedings of the 1994 USENIX Winter Technical
Conference, 1994.

[9] Michael L. Kazar, Bruce W. Leverett, Owen T. An-
derson, Vasilis Apostolides, Beth A. Bottos, Sailesh
Chutani, Craig F. Everhart, W. Anthony Mason,
Shu-Tsui Tu, and Edward R. Zayas. DEcorum file
system architectural overview. In Proceedings of the
1990 USENIX Summer Technical Conference, 1990.

[10] T. J. Kowalski and Marshall K. McKusick. Fsck
- the UNIX file system check program. Technical
report, Bell Laboratories, March 1978.

[11] Seth Lloyd. Ultimate physical limits to computa-
tion. Nature, 406:1047–1054, 2000.

[12] M. Kirk McKusick and Gregory R. Ganger. Soft
updates: A technique for eliminating most syn-
chronous writes in the fast filesystem. In Proceed-
ings of the 1999 USENIX Technical Conference -
Freenix Track, 1999.

[13] M. Kirk McKusick, William N. Joy, Samuel J. Lef-
fler, and Robert S. Fabry. A fast file system for
UNIX. Computer Systems, 2(3):181–197, 1984.

[14] Larry W. McVoy and Steve R. Kleiman. Extent-like
performance from a UNIX file system. In Proceed-
ings of the 1991 USENIX Winter Technical Confer-
ence, 1991.

[15] David A. Patterson, A. Brown, P. Broadwell,
G. Candea, M. Chen, J. Cutler, P. Enriquez,
A. Fox, E. Kiciman, M. Merzbacher, D. Oppen-
heimer, N. Sastry, W. Tetzlaff, J. Traupman, and
N. Treuhaft. Recovery-oriented computing (ROC):
Motivation, definition, techniques, and case studies.
Technical Report UCB//CSD-02-1175, UC Berke-
ley Computer Science Technical Report, 2002.

[16] Mendel Rosenblum and John K. Ousterhout. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems,
10(1):26–52, 1992.

[17] Margo Seltzer, Keith Bostic, Marshall K. McKu-
sick, and Carl Staelin. An implementation of a
log-structured file system for UNIX. In Proceedings
of the 1993 USENIX Winter Technical Conference,
1993.

[18] Margo Seltzer, Greg Ganger, M. Kirk McKu-
sick, Keith Smith, Craig Soules, and Christopher
Stein. Journaling versus soft updates: Asyn-
chronous meta-data protection in file systems. In
Proceedings of the 2000 USENIX Technical Confer-
ence, 2000.

[19] Margo Seltzer, Keith Smith, Hari Balakrishnan,
Jacqueline Chang, Sara McMains, and Venkata N.
Padmanabhan. File system logging versus cluster-
ing: A performance comparison. In Proceedings
of the 1995 USENIX Winter Technical Conference,
1995.

[20] Adam Sweeney, Doug Doucette, Wei Hu, Curtis An-
derson, Michael Nishimoto, and Geoff Peck. Scala-
bility in the XFS file system. In Proceedings of the
1996 USENIX Technical Conference, 1996.

[21] Jon William Toigo. Avoiding a data crunch. Scien-
tific American, May 2000.

[22] Jun Wang and Yiming Hu. WOLF—a novel re-
ordering write buffer to boost the performance of
log–structured file systems. In Proceedings of the
2002 USENIX File Systems and Storage Technolo-
gies Conference, 2002.

13

