
CS 137: File Systems
Persistent Solid-State Storage

1 / 25



Introduction

Technology Change is Here

I Disks are cheaper than any solid-state memory
I Likely to be true for many years
I But SSDs are now cheap enough for some purposes

1980 1985 1990 1995 2000 2005 2010

Year

1000

100

10

1

0.1

0.01

0.001

0.0001

0.00001

$/MB
Paper/Film

Hard Disk

3.5"
Technology

Flash
Digital-

Photography
Boom

2 / 25



The Technology Before Flash

ROM

I ROM (Read-Only Memory) chips were programmed in the factory
I Array of transistors
I Trivial to leave out a wire to make one “defective”
I Result was array of ones and zeros

I Most of chip predesigned; only one mask layer changed
I Still fairly expensive for that mask
I Ultra-low cost in large volumes

3 / 25



The Technology Before Flash

PROM

I PROM (Programmable ROM) is field-programmable
I Array of fuses (literally!)
I Blow a fuse to generate a zero
I Special high-voltage circuitry to select fuse

I Much more expensive per chip than ROM
I But low startup cost made cheaper in low volumes
I One-time use meant lots of chips thrown away

4 / 25



The Technology Before Flash

EPROM

I EPROM (Erasable PROM) used floating-gate technology
I Direct predecessor to flash
I Electrons in floating gate (see later slide) store data
I UV light used to drive out electrons and erase

I 15 minutes to erase
I Expensive, but reusability reduced effective cost

All images from Wikipedia
5 / 25



The Technology Before Flash

EEPROM

I EEPROM (Electrically Erasable PROM) used thinner oxide layer
I Introduced ca. 1983
I High voltage could erase without UV
I Basically flash memory where entire chip erased at once

6 / 25



The Technology Flash Cells

The Flash Cell

I Source line provides voltage, bit line senses
I Current flows between “N” regions, through “P”
I Voltage on control gate restricts current flow in “P”
I Charge on floating gate “screens” control gate

I Allows sensing whether charge is present
7 / 25



The Technology Flash Cells

Programming NOR Flash

I Default state is 1 (current can flow)
I Apply high voltage to control gate
I Run current through channel
I “Hot” electrons jump through insulation to floating gate

8 / 25



The Technology Flash Cells

Erasing NOR Flash

I Apply reverse voltage to control gate
I Disconnect source
I Electrons will now tunnel off floating gate into drain

I (Dummy for spacing)

9 / 25



The Technology Flash Cells

Wear-Out

I Some electrons get stuck in oxide during programming
I Add to electric field from floating gate (even if no charge present)
I Eventually becomes impossible to erase effectively

10 / 25



The Technology Flash Cells

Multilevel Cells (MLC)

I Classic flash stores charge or not: zero or one
I Possible to store different charge quantities

I Sense varying current levels
I Can translate back into multiple bits
I Current limit is sixteen levels ≡ four bits

I Obvious density improvement as number of levels rises
I Slower to read and write
I Poorer reliability
I Modern chips often combine single-level cells (SLC) for speed with MLC/TLC/QLC

for density

11 / 25



The Technology NOR vs. NAND Flash

NOR Flash

I All bit lines tied together
I Readout voltage placed on exactly one word line
I If “0” stored, nobody conducts
I If “1” stored, bit line is connected to ground

I Works like NOR of word lines
12 / 25



The Technology NOR vs. NAND Flash

NAND Flash

I Extra-high voltage placed on all but one word line
I All will conduct

I Remaining line gets “just barely” voltage
I If programmed, will conduct

I Lower number of bit & ground lines means better density
I Programming via tunnel injection, erase via tunnel release

13 / 25



The Technology NOR vs. NAND Flash

Comparison of NOR and NAND

NOR flash:
I Lower density
I Usually wired for true random read access
I Wired to allow writing individual cells
I Erase in blocks of 64-256 KB

NAND flash:
I Cells take about 60% of NOR space
I More space saved by block-read wiring
I Writing (“programming”) is in page-sized chunks of 0.5-4 KB
I Erase in blocks of 16-512 kB
I Extra bits (more individually accessible) to provide ECC and per-page metadata
I OK to have bad blocks

14 / 25



The Technology A NAND Flash Chip

A Sample NAND Chip

Samsung K9F8G08U0M (1G×8)
I Each page is 4K bytes + 128 extra
I One block is 64 pages
I Entire device is 8448 Mbits
I 5-cycle access: CAS1, CAS2, RAS1, RAS2, RAS3

I Eight address bits per cycle
I CAS is 13 bits + 3 for future
I RAS is 18 + 6 for future
I Spare bits mean can later put bigger device into same circuit design

I On RAS3, loads 4K + 128 into Page Register

15 / 25



The Technology A NAND Flash Chip

Chip Commands

Samsung K9F8G08U0M accepts 16-bit commands, such as:
I Reset
I Read
I Block Erase
I Page Program
I Read Status
I Read for Copy Back
I Copy-Back Program

“Two-plane” commands available for overlapped speedup

Random programming prohibited—but can go back and change metadata

16 / 25



The Technology A NAND Flash Chip

Chip Timing

For Samsung K9F8G08U0M:
I Block erase: 2ms (probably not accurate to µs level)
I Program: 700µs
I Read page to buffer: 25µs
I Read bytes: 25ns per byte

Bottom line:
I 25µs + 4096× .025 = 25 + 102.4 = 127.4µs to read a page

= 32.15 MB/s data rate
I 102.4µs + 700 = 802.4µs to write page if already erased

I Otherwise extra 31.25µs (amortized) to erase
I Writing is ≈ 6.3− 6.5× slower than reading

BUT 2ms latency if nothing currently erased.

17 / 25



The Technology A NAND Flash Chip

Chip Timing

For Samsung K9F8G08U0M:
I Block erase: 2ms (probably not accurate to µs level)
I Program: 700µs
I Read page to buffer: 25µs
I Read bytes: 25ns per byte

Bottom line:
I 25µs + 4096× .025 = 25 + 102.4 = 127.4µs to read a page

= 32.15 MB/s data rate
I 102.4µs + 700 = 802.4µs to write page if already erased

I Otherwise extra 31.25µs (amortized) to erase
I Writing is ≈ 6.3− 6.5× slower than reading

BUT 2ms latency if nothing currently erased.

17 / 25



The Technology A NAND Flash Chip

Comparison to Disk Timing

For 3-TB Seagate Barracuda XT (3.5-inch):
I Average latency: 4.16 ms (7200 RPM)
I Average seek time: 8.5 ms (read), 9.5 ms (write)
⇒ 12.66 ms to read one random page
I Sustained transfer rate: 149 MB/s = 27.5µs per 4K bytes

Bottom line: 12.66 ms to read one random page (ouch!)
I 99.4× slower!
I But sequential reads 4.66× faster than flash chip
I Sequential writes are ≈ 30× faster

I But can wire flash chips in parallel to increase bandwidth

18 / 25



The Technology A NAND Flash Chip

Comparison to Disk Timing

For 3-TB Seagate Barracuda XT (3.5-inch):
I Average latency: 4.16 ms (7200 RPM)
I Average seek time: 8.5 ms (read), 9.5 ms (write)
⇒ 12.66 ms to read one random page
I Sustained transfer rate: 149 MB/s = 27.5µs per 4K bytes

Bottom line: 12.66 ms to read one random page (ouch!)
I 99.4× slower!
I But sequential reads 4.66× faster than flash chip
I Sequential writes are ≈ 30× faster
I But can wire flash chips in parallel to increase bandwidth

18 / 25



Building a Flash “Disk” Design Issues

Issues in Using Flash for Storage

I Pre-erasing blocks
I Wear leveling
I Clustering blocks for group writing
I Efficient updates
I ECC and bad-block mapping

19 / 25



Building a Flash “Disk” Design Issues

Issues in Simulating a Disk

I Can’t tell what pages are live
I Expected to allow random updates
I Some blocks (e.g., FAT, inode table) much hotter than others

20 / 25



Building a Flash “Disk” Flash Translation Layers

General Solution: Flash Translation Layer

I All flash “drives” have embedded µprocessor (usually 8051 series)
I Give block-numbered interface to outside world
I Hold back some memory (e.g., 6GB drive pretends to be 4GB)
I Map externally visible blocks to internal physical ones
I Use metadata to track what’s live, bad, etc.

21 / 25



Building a Flash “Disk” Flash Translation Layers

Problems in FTLs

I Wear leveling (what if most blocks are read-only?)
I Solution: must sometimes move RO data

I File system wants to rewrite randomly
I Solution: group newly written blocks together regardless of logical address
I Called “Log-Structured File System” (LFS)

I (We’ll read that paper later. . . )
I Unused block might or might not be live

I Solution: only reclaim block when overwritten
I Solution: know that it’s FAT and reverse-engineer data as it’s written
I Modern solution: TRIM command to SSD

I Misnamed
I Also supported by some non-SSD devices
I Issued by most file systems

22 / 25



Building a Flash “Disk” Flash Translation Layers

A Better Way

I Pretending to be a disk is just plain dumb
I When disks came out, we didn’t make them look like punched cards

I Well. . . mostly
I If filesystem designed for flash, don’t need FTL

I Problem: need entirely new interface
I Apple has done it in MacBook Air (advantage of making both hardware and software)
I Now standardized as Open-Channel
I Supported in Linux 4.x+ kernels

I Some filesystems designed just for flash: YAFFS, JFFS2, TrueFFS, etc.

23 / 25



The Bad News

The Bad News

I Feature-size limit is around 20 nm
I We’re hitting that just about now!
I Some density improvement from MLC and 3-D stacking
I This limit might kill flash as a disk replacement

24 / 25



The Bad News

Other Options

Flash isn’t the only choice:
I Phase-change memory (PRAM or PCRAM)—now available from Intel?
I Magnetic RAM (MRAM)
I ???

New technologies offer:
I Read/write times slightly slower than DRAM
I Slower (or no) wear-out
I Longer storage life without refresh
I Byte addressability

I What happens when filesystems are just like memory?
I Current active research area

25 / 25


	Introduction
	The Technology
	Before Flash
	Flash Cells
	NOR vs. NAND Flash
	A NAND Flash Chip

	Building a Flash ``Disk''
	Design Issues
	Flash Translation Layers

	The Bad News

