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What is a (good) model?

What Is a (Good) Model?

For correlated data, model predicts response given an input
Model should be equation that fits data

Standard definition of “fits” is least-squares

Minimize squared error
Keep mean error zero
Minimizes variance of errors
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Least-Squared Error
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LLealst-Squared Error

If y = by + byx then error in estimate for x; is ; = y; — ¥,
Minimize Sum of Squared Errors (SSE)

n

n
> ef=> (yi— by — bixi)?
i—1

i=1
Subiject to the constraint
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Estimating Model Parameters

Estimating Model Parameters

Best regression parameters are

b1:M by =
> x2 —nx

where

YZ%ZXI' 72%2}4‘

Note that book may have errors in these equations!
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Estimating Model Parameters
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Parameter Estimation Example
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L Parameter Estimation Example

Execution time of a script for various loop counts:
Loops 3 5 7 91 10
Time |12 17|25 |29 |33
X=6.8,y=2325 xy =8854,5 x° = 264

88.54 — 5(6.8)(2.32)
by =

264 — 5(6.8)2

by =2.32 — (0.29)(6.8) = 0.35

=0.29




Estimating Model Parameters
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Graph of Parameter Estimation Example © P fimating Model Parameters
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Allocating Variation
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LAIIocating Variation

Analysis of Variation (ANOVA):
If no regression, best guess of y is y

Observed values of y differ from y, giving rise to errors
(variance)

Regression gives better guess, but there are still errors

We can evaluate quality of regression by allocating sources of
errors



Allocating Variation
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The Total Sum of Squares ™ Alocating Variation

Without regression, squared error is

L_The Total Sum of Squares

2015-06-15

n n

SST = > (vi—-yP=> (W -2vy+¥°)
i=1 i=1

() o)

i=1

= (Zx) —2y(ny) + ny*®
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Allocating Variation

The Sum of Squares from Regression

Recall that regression error is

SSE=) e’ =) (vi—¥)

Error without regression is SST (previous slide)
So regression explains SSR = SST — SSE
Regression quality measured by coefficient of determination

_ SSR_ SST-—SSE

2
R SST SST
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LThe Sum of Squares from Regression




Allocating Variation
Evaluating Coefficient of Determination n CS147

LAIIocating Variation

S
g L Evaluating Coefficient of Determination
AN

Compute SST = (3 y?) — ny?

Compute SSE =S y2 — by Sy — by 3 xy
SST — SSE
SST

Compute R? =
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LExalmple of Coefficient of Determination

For previous regression example:

Loops | 3] 5] 7] 9] 10
Time |12 |1.7|25]|29]33

Sy =11.60, > y? =29.79, 3 xy = 88.54,

ny? = 5(2.32)% = 26.9

SSE = 29.79 — (0.35)(11.60) — (0.29)(88.54) = 0.05
SST =29.79 — 26.9 = 2.89

SSR =2.89 — 0.05 = 2.84

R? = (2.89 — 0.05)/2.89 = 0.98
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Standard Deviation of Errors o @S147
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Variance of errors is SSE divided by degrees of freedom
DOF is n — 2 because we’ve calculated 2 regression
parameters from the data
So variance (mean squared error, MSE) is SSE/(n — 2)

SSE

Standard deviation of errors is square root: s, = 5

(minor error in book)
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LChecking Degrees of Freedom

Degrees of freedom always equate:
SSO0 has 1 (computed from y)
SST has n— 1 (computed from data and y, which uses up 1)
SSE has n — 2 (needs 2 regression parameters)

So SST = SSY-SS0O = SSR+ SSE
n-1 = n -1 = 1 +(n-2)
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Allocating Variation

Example of Standard Deviation of Errors

For regression example, SSE was 0.05, so MSE is
0.05/3=0.017 and s, = 0.13
Note high quality of our regression:

R® =0.98

Se =0.13

Why such a nice straight-line fit?
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LExalmple of Standard Deviation of Errors
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Confidence Intervals for Regressions

L_Confidence Intervals for Regressions

2015-06-15

Regression is done from a single population sample (size n)
Different sample might give different results
True model is y = By + B1x
Parameters by and by are really means taken from a
population sample
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Confidence Intervals for Regressions Parameter Intervals

Calculating Intervals for Regression Parameters

Standard deviations of parameters:

Sp, =
° \/ sz—nx

Sp, =

1 \/sz—nY

Confidence intervals are b; + I1-5:n-2]5h,

Note that t has n — 2 degrees of freedom!
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LCalculating Intervals for Regression
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Example of Parameter Confidence Intervals
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Recall se =0.13,n =5, x> = 264, X = 6.8

_ /1 (682
SO Sbo = 01301§ + m =0.16

Sp, = /264 5(68) = 0.004

Using 90% confidence level, {p g5.3 = 2.353

Thus, b0 interval is 0.35 = 2.353(0.16) = (—0.03,0.73)
Not significant at 90%

And by is 0.29 F 2.353(0.004) = (0.28,0.30)
Significant at 90% (and would survive even 99.9% test)
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Confidence Intervals for Regressions Prediction Intervals
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L_Confidence Intervals for Predictions

Confidence Intervals for Predictions
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Previous confidence intervals are for parameters
How certain can we be that the parameters are correct?
Purpose of regression is prediction

How accurate are the predictions?
Regression gives mean of predicted response, based on
sample we took
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Predicting m Samples
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Standard deviation for mean of future sample of m
observations at xp is

1 1 Xp — X)?
1T, o XP

Sy :Se —
yme m n S x2_nx?

Note deviation drops as m — oo
Variance minimal at x = x

Use t-quantiles with n — 2 DOF for calculating confidence
interval
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Confidence Intervals for Regressions Prediction Intervals

CS147
L Confidence Intervals for Regressions
L Prediction Intervals
LExample of Confidence of Predictions

Example of Confidence of Predictions
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Using previous equation, what is predicted time for a single
run of 8 loops?

Time = 0.35 + 0.29(8) = 2.67
Standard deviation of errors s = 0.13

B 1 (8-68)2
15 0.13\/1 +5+ 264 5687 ~ "

90% interval is then 2.65 = 2.353(0.14) = (2.34,3.00)
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Confidence Intervals for Regressions

Prediction Confidence

Prediction Intervals
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Verifying Regression

Verifying Assumptions Visually

Regressions are based on assumptions:
Linear relationship between response y and predictor x
Or nonlinear relationship used in fitting

Predictor x nonstochastic and error-free
Model errors statistically independent

With distribution N(0, c) for constant ¢
If assumptions violated, model misleading or invalid

23
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Verifying Regression
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Verifying Regression

Testing Independence of Errors

Scatter-plot ¢; versus y;
Should be no visible trend
Example from our curve fit:

0.2
0.1

0.0
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LTesting Independence of Errors
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Verifying Regression

CS147
L Verifying Regression

More on Testing Independence

L—More on Testing Independence
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May be useful to plot error residuals versus experiment
number

In previous example, this gives same plot except for x scaling
No foolproof tests

“Independence” test really disproves particular dependence
Maybe next test will show different dependence!
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LTesting for Normal Errors 7‘4

Testing for Normal Errors
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Prepare quantile-quantile plot of errors
Example for our regression:

0.2

0.1

-0.1
-1.0 -0.5 0.0 0.5 1.0



Verifying Regression

Testing for Constant Standard Deviation

Tongue-twister: homoscedasticity
Return to independence plot
Look for trend in spread
Example:

0.2
0.1

0.0

-0.1
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L Linear Regression Can Be Misleading
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Regression throws away some information about the data
To allow more compact summarization
Sometimes vital characteristics are thrown away

Often, looking at data plots can tell you whether you will have a
problem
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LExalmple of Misleading Regression
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I ] 1]} v
X y X y X y X y
10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76
13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 711 8 8.84
11 8.33 11 9.26 11 7.81 8 847
14 9.96 14 8.10 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 525
4 426 4 3.10 4 5.39 19 12.50
12 10.84 12 9.13 12 8.15 8 5.56
7 482 7 7.26 7 642 8 7.91
5 568 5 4.74 5 5.73 8 6.89
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Verifying Regression

What Does Regression Tell Us?

Exactly the same thing for each data set!

n=11
Meanof y =7.5
y =3+ 0.5x

Standard error of regression is 0.118
All the sums of squares are the same
Correlation coefficient = 0.82

R? = 0.67
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L Verifying Regression

Now Look at the Data Plots
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Verifying Regression

Now Look at the Data Plots
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Verifying Regression

Now Look at the Data Plots
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