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Multiple Linear Regression

Multiple Linear Regression

I Develops models with more than one predictor variable
I But each predictor variable has linear relationship to response

variable
I Conceptually, plotting a regression line in n-dimensional

space, instead of 2-dimensional
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Multiple Linear Regression Basic Formulas

Basic Multiple Linear Regression Formula

Response y is a function of k predictor variables x1, x2, . . . , xk

y = b0 + b1x1 + b2x2 + · · ·+ bkxk + e
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Multiple Linear Regression Basic Formulas

A Multiple Linear Regression Model

Given sample of n observations

{(x11, x21, . . . , xk1, y1), . . . , (x1n, x2n, . . . , xkn, yn)}

model consists of n equations (note possible + vs. − typo in
book):

y1 = b0 + b1x11 + b2x21 + · · ·+ bkxk1 + e1

y2 = b0 + b1x12 + b2x22 + · · ·+ bkxk2 + e2
...

yn = b0 + b1x1n + b2x2n + · · ·+ bkxkn + en
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Multiple Linear Regression Basic Formulas

Looks Like It’s Matrix Arithmetic Time

y = Xb + e
y1
y2
...

yn

 =


1 x11 x21 . . . xk1
1 x12 x22 . . . xk2
...

...
...

...
...

1 x1n x2n . . . xkn




b0
b1
...

bk

+


e0
e1
...

en


Note that:

I y and e have n elements
I b has k + 1
I x is k by n
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Multiple Linear Regression Basic Formulas

Analysis of Multiple Linear Regression

I Listed in box 15.1 of Jain
I Not terribly important (for our purposes) how they were

derived
I This isn’t a class on statistics

I But you need to know how to use them
I Mostly matrix analogs to simple linear regression results
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Multiple Linear Regression Example

Example of Multiple Linear Regression

I IMDB keeps numerical popularity ratings of movies
I Postulate popularity of Academy Award-winning films is

based on two factors:
I Year made
I Running time

I Produce a regression

rating = b0 + b1(year) + b2(length)
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Multiple Linear Regression Example

Some Sample Data

Title Year Length Rating
Silence of the Lambs 1991 118 8.1
Terms of Endearment 1983 132 6.8
Rocky 1976 119 7.0
Oliver! 1968 153 7.4
Marty 1955 91 7.7
Gentleman’s Agreement 1947 118 7.5
Mutiny on the Bounty 1935 132 7.6
It Happened One Night 1934 105 8.0
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Multiple Linear Regression Example

Now for Some Tedious Matrix Arithmetic

I We need to calculate X, XT, XTX, (XTX)−1, and XTy
I Because b = (XTX)−1(XTy)
I We will see that b = (18.5430,−0.0051,−0.0086)
I Meaning the regression predicts:

rating = 18.5430− 0.0051(year)− 0.0086(length)
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Multiple Linear Regression Example

X Matrix for Example

X =



1 1991 118
1 1983 132
1 1976 119
1 1968 153
1 1955 91
1 1947 118
1 1935 132
1 1934 105


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Multiple Linear Regression Example

Transpose to Get XT

XT =

 1 1 1 1 1 1 1 1
1991 1983 1976 1968 1955 1947 1935 1934

118 132 119 153 91 118 132 105


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Multiple Linear Regression Example

Multiply To Get XTX

XTX =

 8 15689 968
15689 30771385 1899083

968 1899083 119572


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Multiple Linear Regression Example

Invert to Get C = (XTX)−1

C = (XTX)−1 =

 1207.7585 -0.6240 0.1328
-0.6240 0.0003 -0.0001
0.1328 -0.0001 0.0004


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Multiple Linear Regression Example

Multiply to Get XTy

XTy =

 60.1
117840.7

7247.5


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Multiple Linear Regression Example
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 18.5430
-0.0051
-0.0086



16 / 36

Multiply (XTX)−1(XTy) to Get b

b =

 18.5430
-0.0051
-0.0086



20
15

-0
6-

15

CS147
Multiple Linear Regression

Example
Multiply (XTX)−1(XTy) to Get b



Multiple Linear Regression Quality of the Example

How Good Is This Regression Model?

I How accurately does model predict film rating based on age
and running time?

I Best way to determine this analytically is to calculate errors:

SSE = yTy− bTXTy

or
SSE =

∑
e2

i
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Multiple Linear Regression Quality of the Example

Calculating the Errors

Estimated
Year Length Rating Rating ei e2

i
1991 118 8.1 7.4 −0.71 0.51
1983 132 6.8 7.3 0.51 0.26
1976 119 7.0 7.5 0.45 0.21
1968 153 7.4 7.2 −0.20 0.04
1955 91 7.7 7.8 0.10 0.01
1947 118 7.5 7.6 0.11 0.01
1935 132 7.6 7.6 −0.05 0.00
1934 105 8.0 7.8 −0.21 0.04
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Multiple Linear Regression Quality of the Example

Calculating the Errors, Continued

I SSE = 1.08
I SSY =

∑
y2

i = 452.91
I SS0 = ny2 = 451.5
I SST = SSY− SS0 = 452.9− 451.5 = 1.4
I SSR = SST− SSE = 0.33

I R2 =
SSR
SST

=
0.33
1.41

= 0.23

I In other words, this regression stinks
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Multiple Linear Regression Quality of the Example

Why Does It Stink?

I Let’s look at properties of the regression parameters

se =

√
SSE
n − 3

=

√
1.08

5
= 0.46

I Now calculate standard deviations of the regression
parameters (These are estimations only, since we’re working
with a sample)

I Estimated stdev of

b0 is se
√

c00 = 0.46
√

1207.76 = 16.16

b1 is se
√

c11 = 0.46
√

0.0003 = 0.0084

b2 is se
√

c22 = 0.46
√

0.0004 = 0.0097
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Multiple Linear Regression Quality of the Example

Calculating Confidence Intervals of STDEVs

I We will use 90% level
I Confidence intervals for

b0 is 18.54∓ 2.015(16.16) = (−14.02,51.10)
b1 is 0.005∓ 2.015(0.0084) = (−0.022,0.012)
b2 is 0.009∓ 2.015(0.0097) = (−0.028,0.011)

I None is significant at this level
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Multiple Linear Regression Quality of the Example

Analysis of Variance

I So, can we really say that none of the predictor variables are
significant?

I Not yet; predictors may be correlated
I F-tests can be used for this purpose

I E.g., to determine if the SSR is significantly higher than the
SSE

I Equivalent to testing that y does not depend on any of the
predictor variables

I Alternatively, that no bi is significantly nonzero
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Multiple Linear Regression Quality of the Example

Running an F-Test

I Need to calculate SSR and SSE
I From those, calculate mean squares of regression (MSR) and

errors (MSE)
I MSR/MSE has an F distribution
I If MSR/MSE > Ftable, predictors explain significant fraction of

response variation
I Note typos in book’s table 15.3

I SSR has k degrees of freedom
I SST matches y − y , not y − ŷ
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Multiple Linear Regression Quality of the Example

F-Test for Our Example

I SSR = .33
I SSE = 1.08
I MSR = SSR/k = .33/2 = .16
I MSE = SSE/(n − k − 1) = 1.08/(8− 2− 1) = .22
I F-computed = MSR/MSE = .76
I F[90;2,5] = 3.78
I So it fails the F-test at 90% (miserably)
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Multiple Linear Regression Quality of the Example

Multicollinearity

I If two predictor variables are linearly dependent, they are
collinear

I Meaning they are related
I And thus second variable does not improve regression
I In fact, it can make it worse

I Typical symptom is inconsistent results from various
significance tests
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Multiple Linear Regression Quality of the Example

Finding Multicollinearity

I Must test correlation between predictor variables
I If it’s high, eliminate one and repeat regression without it
I If significance of regression improves, it’s probably due to

collinearity between the variables
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Multiple Linear Regression Quality of the Example

Is Multicollinearity a Problem in Our Example?

I Probably not, since significance tests are consistent
I But let’s check, anyway
I Calculate correlation of age and length
I After tedious calculation, 0.25

I Not especially correlated
I Important point—adding a predictor variable does not

always improve a regression
I See example on p. 253 of book
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Multiple Linear Regression Quality of the Example

Why Didn’t Regression Work Well Here?

I Check scatter plots
I Rating vs. year
I Rating vs. length

I Regardless of how good or bad regressions look, always
check the scatter plots
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Multiple Linear Regression Quality of the Example

Rating vs. Length

80 100 120 140 160

Length

0

2

4

6
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Multiple Linear Regression Quality of the Example

Rating vs. Year
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Categorical Models

Regression With Categorical Predictors

I Regression methods discussed so far assume numerical
variables

I What if some of your variables are categorical in nature?
I If all are categorical, use techniques discussed later in the

course
I Levels: number of values a category can take
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Categorical Models

Handling Categorical Predictors

I If only two levels, define bi as follows
I xi = 0 for first value
I xi = 1 for second value

I (This definition is missing from book in section 15.2)
I Can use +1 and -1 as values, instead
I Need k − 1 predictor variables for k levels

I To avoid implying order in categories
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Categorical Models

Categorical Variables Example

Which is a better predictor of a high rating in the movie database?
I Winning an Oscar?
I Winning the Golden Palm at Cannes?
I Winning the New York Critics Circle?
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Categorical Models

Choosing Variables

I Categories are not mutually exclusive
I x1 = 1 if Oscar, 0 otherwise
I x2 = 1 if Golden Palm, 0 otherwise
I x3 = 1 if Critics Circle Award, 0 otherwise
I y = b0 + b1x1 + b2x2 + b3x3

34 / 36

Choosing Variables

I Categories are not mutually exclusive
I x1 = 1 if Oscar, 0 otherwise
I x2 = 1 if Golden Palm, 0 otherwise
I x3 = 1 if Critics Circle Award, 0 otherwise
I y = b0 + b1x1 + b2x2 + b3x3

20
15

-0
6-

15

CS147
Categorical Models

Choosing Variables



Categorical Models

A Few Data Points

Title Rating Oscar Palm NYC
Gentleman’s Agreement 7.5 X X
Mutiny on the Bounty 7.6 X
Marty 7.4 X X X
If 7.8 X
La Dolce Vita 8.1 X
Kagemusha 8.2 X
The Defiant Ones 7.5 X
Reds 6.6 X
High Noon 8.1 X
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Categorical Models

And Regression Says. . .

I ŷ = 7.8− 0.1x1 + 0.2x2 − 0.4x3

I How good is that?

I R2 is 34% of variation
I Better than age and length
I But still no great shakes

I Are regression parameters significant at 90% level?
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