CS147 90-91-90-9102

CS 147: Computer Systems Performance Analysis Advanced Regression Techniques

CS 147: Computer Systems Performance Analysis Advanced Regression Techniques

Overview

Curvilinear Regression

Common Transformations General Transformations

Handling Outliers

Common Mistakes

Curvilinear Regression

 Linear regression assumes a linear relationship between predictor and response What if it ary linear?
 You need to fit some other type of function to the relationship

urvilinear Regressio

- Linear regression assumes a linear relationship between predictor and response
- What if it isn't linear?
- > You need to fit some other type of function to the relationship

When To Use Curvilinear Regression

- Easiest to tell by sight
- Make a scatter plot
 - If plot looks non-linear, try curvilinear regression
- > Or if non-linear relationship is suspected for other reasons
- Relationship should be convertible to a linear form

CS147 Curvilinear Regression

- when To Use Curvilinear Regression
- Easiest to tell by sight
- Make a scatter plot
- If plot looks non-linear, try curvilinear regression
 Or if non-linear relationship is suspected for other reasons
- Or it non-linear relationship is suspected for other rel Relationship should be convertible to a linear form

Types of Curvilinear Regression

- Many possible types, based on a variety of relationships:
 - $y = ax^b$
 - y = a + b/x
 - \triangleright y = ab^x
 - Etc., ad infinitum

Transform Them to Linear Forms

- Apply logarithms, multiplication, division, whatever to produce something in linear form
- ▶ I.e., $y = a + b \times$ something
 - Or a similar form
- If predictor appears in more than one transformed predictor variable, correlation is likely!

Sample Transformations

٠	For $y = ae^{bx}$ take logarithm of y, do regression on
	$\log y = b_0 + b_1 x$, let $b = b_1$, $a = e^{b_0}$
•	For y = a + b log x, take log of x before fitting parameters, le
	$b = b_1, a = b_0$
	For $y = ax^{0}$ take log of both y and y let $h = h$, $a = a^{h_{0}}$

nole Transformat

- For $y = ae^{bx}$ take logarithm of y, do regression on $\log y = b_0 + b_1 x$, let $b = b_1$, $a = e^{b_0}$
- For y = a + b log x, take log of x before fitting parameters, let b = b₁, a = b₀
- For $y = ax^b$, take log of both x and y, let $b = b_1$, $a = e^{b_0}$

Corrections to Jain p. 257 (Early Editions)

Corrections to Jain p. 257 (Early Editors)	
Nonlinear	Linear
y = a + b/x $y = 1/(a + bx)$	y = a+b(1/x) (1/y) = a + bx
y = x(a + bx) $y = ab^{x}$	(x/y) = a + bx ln y = ln a + x ln b
$y = a + bx^{0}$	$y = a + b(x^{\alpha})$

Nonlinear	Linear
y = a + b/x	y = a+b(1/x)
y = 1/(a+bx)	(1/y) = a + bx
y = x(a+bx)	(x/y) = a + bx
$y = ab^x$	$\ln y = \ln a + x \ln b$
$y = a + bx^n$	$y = a + b(x^n)$

General Transformations

 Use some function of response variable y in place of y in
 Curvilinear regression is one example
 But techniques are more generally applicable

eneral Transformations

- ▶ Use some function of response variable *y* in place of *y* itself
- Curvilinear regression is one example
- But techniques are more generally applicable

When To Transform?

 If known properties of measured system suggest it.
 If data's range covers several orders of magnitude
 If homogeneous variance assumption of residuals (homoscedasticity) is violated

- If known properties of measured system suggest it
- If data's range covers several orders of magnitude
- If homogeneous variance assumption of residuals (homoscedasticity) is violated

Transforming Due To (Lack of) Homoscedasticity

CS147 Curvilinear Regression General Transformations Transforming Due To (Lack of) Homoscedasticity

- If spread of scatter plot of residual vs. predicted response isn't homogeneous,
- > Then residuals are still functions of the predictor variables
- Transformation of response may solve the problem

What Transformation To Use?

- Compute standard deviation of residuals
 - Plot as function of mean of observations
 - Assuming multiple experiments for single set of predictor values
 - Check for linearity: if linear, use a log transform
- If variance against mean of observations is linear, use square-root transform
- If standard deviation against mean squared is linear, use inverse (1/y) transform
- If standard deviation against mean to a power is linear, use power transform
- More covered in the book

it transformation to Use?

- Piot as function of mean of observations
 Assuming multiple experiments for single set of predictor value
 Check for linearity: If linear, use a log transform
 H variance experiments mean of observations is linear, use
 square-root transform
- If standard deviation against mean aquared is linear, use inverse (1/v) transform
- It standard deviation against mean to a power is linear, use
- power transform More covered in the book

General Transformation Principle

For some observed relation between standard deviation and mean, $s = g(\overline{p})$; let $h(y) = \int \frac{1}{g(y)} \frac{dy}{dy}$ transform to w = h(y) and regress on w

eneral Transformation Principle

For some observed relation between standard deviation and mean, $s = g(\overline{y})$: let $h(y) = \int \frac{1}{g(y)} dy$ transform to w = h(y) and regress on w Curvilinear Regression General Transformations

Example: Log Transformation

xample: Log Transformation

If standard deviation against mean is linear, then $g(y) = a\overline{y}$ So $h(y) = \int \frac{1}{dy} dy = \frac{1}{d} \ln y$

If standard deviation against mean is linear, then $g(y) = a\overline{y}$ So $h(y) = \int \frac{1}{ay} dy = \frac{1}{a} \ln y$

Confidence Intervals for Nonlinear Regressions

- For nonlinear fits using general (e.g., exponential) transformations:
 - Confidence intervals apply to transformed parameters
 - Not valid to perform inverse transformation before calculating intervals
 - Must express confidence intervals in transformed domain

Outliers

CS147 Handling Outliers

Appical observations might be outliers Measurements that are not tudy characteristic By chance, averal standard deviators out C matakes might have been made in measureme Which leads to a problem: Do you include outliers in analysis or not?

- Atypical observations might be outliers
 - Measurements that are not truly characteristic
 - By chance, several standard deviations out
 - Or mistakes might have been made in measurement
- ► Which leads to a problem:

Do you include outliers in analysis or not?

Deciding How To Handle Outliers

- 1. Find them (by looking at scatter plot)
- 2. Check carefully for experimental error
- 3. Repeat experiments at predictor values for each outlier
- 4. Decide whether to include or omit outliers
 - Or do analysis both ways

Question: Is last point in last lecture's example an outlier on rating vs. year plot?

Common Mistakes in Regression

Generally based on taking shortcuts

mon Mistakes in Regressi

- Or not being careful
- Or not understanding some fundamental principle of statistics

- Generally based on taking shortcuts
- Or not being careful
- > Or not understanding some fundamental principle of statistics

Not Verifying Linearity

CS147 Common Mistakes

Not Verifying Linearity

- Draw the scatter plot
- If it's not linear, check for curvilinear possibilities
- Misleading to use linear regression when relationship isn't linear

- Draw the scatter plot
- If it's not linear, check for curvilinear possibilities
- Misleading to use linear regression when relationship isn't linear

Relying on Results Without Visual Verification

- Always check scatter plot as part of regression
 - Examine predicted line vs. actual points
- Particularly important if regression is done automatically

Some Nonlinear Examples

CS147 Common Mistakes

Attaching Importance to Parameter Values

- Numerical values of regression parameters depend on scale of predictor variables
- So just because a particular parameter's value seems "small" or "large," not necessarily an indication of importance
- E.g., converting seconds to microseconds doesn't change anything fundamental
 - But magnitude of associated parameter changes

Not Specifying Confidence Intervals

CS147 Common Mistakes -Common Mistakes -Not Specifying Confidence Intervals

- Samples of observations are random
- > Thus, regression yields parameters with random properties
- Without confidence interval, impossible to understand what a parameter really means

Not Calculating Coefficient of Determination

- Without R², difficult to determine how much of variance is explained by the regression
- Even if R² looks good, safest to also perform an F-test
- Not that much extra effort

Using Coefficient of Correlation Improperly

CS147 Common Mistakes Using Coefficient of Correlation Improperly Using Coefficient of Correlation Improperly

- Coefficient of determination is R²
- Coefficient of correlation is R
- R² gives percentage of variance explained by regression, not R
- E.g., if R is .5, R² is .25
- And regression explains 25% of variance
- Not 50%!

Using Highly Correlated Predictor Variables

- If two predictor variables are highly correlated, using both degrades regression
- E.g., likely to be correlation between an executable's on-disk and in-core sizes
 - So don't use both as predictors of run time
- Means you need to understand your predictor variables as well as possible

Using Regression Beyond Range of Observations

- Regression is based on observed behavior in a particular sample
- Most likely to predict accurately within range of that sample
 - Far outside the range, who knows?
- E.g., regression on run time of executables smaller than size of main memory may not predict performance of executables that need VM activity

Measuring Too Little of the Range

CS147 Common Mistakes Measuring Too Little of the Range

- Converse of prevoius mistake
- Regression only predicts well near range of observations
- If you don't measure commonly used range, regression won't predict much
- E.g., if many programs are bigger than main memory, only measuring those that are smaller is a mistake

Using Too Many Predictor Variables

- Adding more predictors does not necessarily improve model!
- More likely to run into multicollinearity problems
- So what variables to choose?
 - It's an art
 - Subject of much of this course

Assuming a Good Predictor Is a Good Controller

- Often, a goal of regression is finding control variables
- But correlation isn't necessarily control
- Just because variable A is related to variable B, you may not be able to control values of B by varying A
- E.g., if number of hits on a Web page is correlated to server bandwidth, you might not boost hits by increasing bandwidth

