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Curvilinear Regression

I Linear regression assumes a linear relationship between
predictor and response

I What if it isn’t linear?
I You need to fit some other type of function to the relationship
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Curvilinear Regression

When To Use Curvilinear Regression

I Easiest to tell by sight
I Make a scatter plot

I If plot looks non-linear, try curvilinear regression
I Or if non-linear relationship is suspected for other reasons
I Relationship should be convertible to a linear form
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Curvilinear Regression Common Transformations

Types of Curvilinear Regression

I Many possible types, based on a variety of relationships:
I y = axb

I y = a + b/x
I y = abx

I Etc., ad infinitum
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Curvilinear Regression Common Transformations

Transform Them to Linear Forms

I Apply logarithms, multiplication, division, whatever to produce
something in linear form

I I.e., y = a + b × something
I Or a similar form

I If predictor appears in more than one transformed predictor
variable, correlation is likely!
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Curvilinear Regression Common Transformations

Sample Transformations

I For y = aebx take logarithm of y , do regression on
log y = b0 + b1x , let b = b1, a = eb0

I For y = a + b log x , take log of x before fitting parameters, let
b = b1, a = b0

I For y = axb, take log of both x and y , let b = b1, a = eb0
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Curvilinear Regression Common Transformations

Corrections to Jain p. 257
(Early Editions)

Nonlinear Linear
y = a + b/x y = a+b(1/x)

y = 1/(a + bx) (1/y) = a + bx
y = x(a + bx) (x/y) = a + bx

y = abx ln y = ln a + x ln b

y = a + bxn y = a + b(xn)
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Curvilinear Regression General Transformations

General Transformations

I Use some function of response variable y in place of y itself
I Curvilinear regression is one example
I But techniques are more generally applicable
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Curvilinear Regression General Transformations

When To Transform?

I If known properties of measured system suggest it
I If data’s range covers several orders of magnitude
I If homogeneous variance assumption of residuals

(homoscedasticity) is violated
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Curvilinear Regression General Transformations

Transforming Due To (Lack of) Homoscedasticity

I If spread of scatter plot of residual vs. predicted response
isn’t homogeneous,

I Then residuals are still functions of the predictor variables
I Transformation of response may solve the problem
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Curvilinear Regression General Transformations

What Transformation To Use?

I Compute standard deviation of residuals
I Plot as function of mean of observations

I Assuming multiple experiments for single set of predictor values
I Check for linearity: if linear, use a log transform

I If variance against mean of observations is linear, use
square-root transform

I If standard deviation against mean squared is linear, use
inverse (1/y ) transform

I If standard deviation against mean to a power is linear, use
power transform

I More covered in the book
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Curvilinear Regression General Transformations

General Transformation Principle

For some observed relation between standard deviation and
mean, s = g(y):

let h(y) =
∫

1
g(y)

dy

transform to w = h(y) and regress on w
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Curvilinear Regression General Transformations

Example: Log Transformation

If standard deviation against mean is linear, then g(y) = ay

So h(y) =
∫

1
ay

dy =
1
a

ln y
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Curvilinear Regression General Transformations

Confidence Intervals for Nonlinear Regressions

I For nonlinear fits using general (e.g., exponential)
transformations:

I Confidence intervals apply to transformed parameters
I Not valid to perform inverse transformation before calculating

intervals
I Must express confidence intervals in transformed domain
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Handling Outliers

Outliers

I Atypical observations might be outliers
I Measurements that are not truly characteristic
I By chance, several standard deviations out
I Or mistakes might have been made in measurement

I Which leads to a problem:
Do you include outliers in analysis or not?
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Handling Outliers

Deciding How To Handle Outliers

1. Find them (by looking at scatter plot)
2. Check carefully for experimental error
3. Repeat experiments at predictor values for each outlier
4. Decide whether to include or omit outliers

I Or do analysis both ways

Question: Is last point in last lecture’s example an outlier on rating
vs. year plot?
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Rating vs. Year
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Common Mistakes

Common Mistakes in Regression

I Generally based on taking shortcuts
I Or not being careful
I Or not understanding some fundamental principle of statistics
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Common Mistakes

Not Verifying Linearity

I Draw the scatter plot
I If it’s not linear, check for curvilinear possibilities
I Misleading to use linear regression when relationship isn’t

linear
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Common Mistakes

Relying on Results Without Visual Verification

I Always check scatter plot as part of regression
I Examine predicted line vs. actual points

I Particularly important if regression is done automatically
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Common Mistakes

Some Nonlinear Examples
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Common Mistakes

Attaching Importance to Parameter Values

I Numerical values of regression parameters depend on scale
of predictor variables

I So just because a particular parameter’s value seems “small”
or “large,” not necessarily an indication of importance

I E.g., converting seconds to microseconds doesn’t change
anything fundamental

I But magnitude of associated parameter changes
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Common Mistakes

Not Specifying Confidence Intervals

I Samples of observations are random
I Thus, regression yields parameters with random properties
I Without confidence interval, impossible to understand what a

parameter really means

24 / 31

Not Specifying Confidence Intervals

I Samples of observations are random
I Thus, regression yields parameters with random properties
I Without confidence interval, impossible to understand what a

parameter really means

20
15

-0
6-

15

CS147
Common Mistakes

Not Specifying Confidence Intervals



Common Mistakes

Not Calculating Coefficient of Determination

I Without R2, difficult to determine how much of variance is
explained by the regression

I Even if R2 looks good, safest to also perform an F-test
I Not that much extra effort
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Common Mistakes

Using Coefficient of Correlation Improperly

I Coefficient of determination is R2

I Coefficient of correlation is R
I R2 gives percentage of variance explained by regression, not

R
I E.g., if R is .5, R2 is .25
I And regression explains 25% of variance
I Not 50%!
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Common Mistakes

Using Highly Correlated Predictor Variables

I If two predictor variables are highly correlated, using both
degrades regression

I E.g., likely to be correlation between an executable’s on-disk
and in-core sizes

I So don’t use both as predictors of run time
I Means you need to understand your predictor variables as

well as possible
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Common Mistakes

Using Regression Beyond Range of Observations

I Regression is based on observed behavior in a particular
sample

I Most likely to predict accurately within range of that sample
I Far outside the range, who knows?

I E.g., regression on run time of executables smaller than size
of main memory may not predict performance of executables
that need VM activity
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Common Mistakes

Measuring Too Little of the Range

I Converse of prevoius mistake
I Regression only predicts well near range of observations
I If you don’t measure commonly used range, regression won’t

predict much
I E.g., if many programs are bigger than main memory, only

measuring those that are smaller is a mistake
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Common Mistakes

Using Too Many Predictor Variables

I Adding more predictors does not necessarily improve model!
I More likely to run into multicollinearity problems
I So what variables to choose?

I It’s an art
I Subject of much of this course
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Common Mistakes

Assuming a Good Predictor Is a Good Controller

I Often, a goal of regression is finding control variables
I But correlation isn’t necessarily control
I Just because variable A is related to variable B, you may not

be able to control values of B by varying A
I E.g., if number of hits on a Web page is correlated to server

bandwidth, you might not boost hits by increasing bandwidth
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