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2k r Designs

2k Factorial Designs With Replications

I 2k factorial designs do not allow for estimation of
experimental error

I No experiment is ever repeated
I Error is usually present

I And usually important
I Handle issue by replicating experiments
I But which to replicate, and how often?
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I Again, easiest to first look at case of only 2 factors
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2k r Designs 22r Designs

22r Factorial Designs

I 2 factors, 2 levels each, with r replications at each of the four
combinations

I y = q0 + qAxA + qBxB + qABxAxB + e
I Now we need to compute effects, estimate errors, and

allocate variation
I Can also produce confidence intervals for effects and

predicted responses
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2k r Designs Effects

Computing Effects for 22r Factorial Experiments

I We can use sign table, as before
I But instead of single observations, regress off mean of the r

observations
I Compute errors for each replication using similar tabular

method
I Sum of errors must be zero
I eij = yij − ŷi

I Similar methods used for allocation of variance and
calculating confidence intervals
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The tabular method for errors is as follows: after computing the
effects, multiply the effects by the sign table to get the estimated
response. Enter that into the table and then subtractfrom each
measured response to get errors.



2k r Designs Effects

Example of 22r Factorial Design With Replications

I Same parallel system as before, but with 4 replications at
each point (r = 4)

I No DLM, 8 nodes: 820, 822, 813, 809
I DLM, 8 nodes: 776, 798, 750, 755
I No DLM, 64 nodes: 217, 228, 215, 221
I DLM, 64 nodes: 197, 180, 220, 185
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2k r Designs Effects

22r Factorial Example Analysis Matrix

I A B AB y Mean
1 -1 -1 1 (820,822,813,809) 816.00
1 1 -1 -1 (217,228,215,221) 220.25
1 -1 1 -1 (776,798,750,755) 769.75
1 1 1 1 (197,180,220,185) 195.50

2001.5 -1170.0 -71.00 21.5 Total
500.4 -292.5 -17.75 5.4 Total/4

q0 = 500.40 qA = -292.5
qB = -17.75 qAB = 5.4

8 / 44

22r Factorial Example Analysis Matrix

I A B AB y Mean
1 -1 -1 1 (820,822,813,809) 816.00
1 1 -1 -1 (217,228,215,221) 220.25
1 -1 1 -1 (776,798,750,755) 769.75
1 1 1 1 (197,180,220,185) 195.50

2001.5 -1170.0 -71.00 21.5 Total
500.4 -292.5 -17.75 5.4 Total/4

q0 = 500.40 qA = -292.5
qB = -17.75 qAB = 5.420

15
-0

6-
15

CS147
2k r Designs

Effects
22r Factorial Example Analysis Matrix



2k r Designs Effects

Estimation of Errors for 22r Factorial Example

I Figure differences between predicted and observed values for
each replication:

eij = yij − ŷi

= yij − q0 − qAxAi − qBxBi − qABxAixBi

I Now calculate SSE:

SSE =
22∑

i=1

r∑
j=1

e2
ij = 2606
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2k r Designs Analysis of Variance

Allocating Variation

I We can determine percentage of variation due to each
factor’s impact

I Just like 2k designs without replication
I But we can also isolate variation due to experimental errors
I Methods are similar to other regression techniques for

allocating variation
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2k r Designs Analysis of Variance

Variation Allocation in Example

I We’ve already figured SSE
I We also need SST, SSA, SSB, and SSAB

SST =
∑
i,j

(yij − y ··)
2

I Also, SST = SSA + SSB + SSAB + SSE
I Use same formulae as before for SSA, SSB, and SSAB
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2k r Designs Analysis of Variance

Sums of Squares for Example

I SST = SSY− SS0 = 1,377,009.75
I SSA = 1,368,900
I SSB = 5041
I SSAB = 462.25
I Percentage of variation for A is 99.4%
I Percentage of variation for B is 0.4%
I Percentage of variation for A/B interaction is 0.03%
I And 0.2% (approx.) is due to experimental errors
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2k r Designs Confidence Intervals

Confidence Intervals for Effects

I Computed effects are random variables
I Thus would like to specify how confident we are that they are

correct
I Usual confidence-interval methods
I First, must figure Mean Square of Errors

s2
e =

SSE
22(r − 1)

I r − 1 is because errors add up to zero
⇒ Only r − 1 can be chosen independently
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2k r Designs Confidence Intervals

Calculating Variances of Effects

I Variance (due to errors) of all effects is the same:

s2
q0

= s2
qA

= s2
qB

= s2
qAB =

s2
e

22r

I So standard deviation is also the same
I In calculations, use t- or z-value for 22(r − 1) degrees of

freedom
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2k r Designs Confidence Intervals

Calculating Confidence Intervals for Example

I At 90% level, using t-value for 12 degrees of freedom, 1.782
I Standard deviation of effects is 3.68
I Confidence intervals are qi ∓ (1.782)(3.68)
I q0 is (493.8,506.9)
I qA is (-299.1,-285.9)
I qB is (-24.3,-11.2)
I qAB is (-1.2,11.9)
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2k r Designs Predictions

Predicted Responses

I We already have predicted all the means we can predict from
this kind of model

I We measured four, we can “predict” four
I However, we can predict how close we would get to true

sample mean if we ran m more experiments
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2k r Designs Predictions

Formula for Predicted Means

I For m future experiments, predicted mean is

ŷ ∓ t[1−α/2;22(r−1)]sŷm

Where

syŷm
= se

(
1

neff
+

1
m

)1/2

neff =
Total number of runs

1 + sum of DFs of parameters used in ŷ
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2k r Designs Predictions

Example of Predicted Means

I What would we predict as confidence interval of response for
no dynamic load management at 8 nodes for 7 more tests?

sŷ7 = 3.68
(

1
16/5

+
1
7

)1/2

= 2.49

I 90% confidence interval is (811.6,820.4)
I We’re 90% confident that mean would be in this range
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2k r Designs Verification

Visual Tests for Verifying Assumptions

I What assumptions have we been making?
I Model errors are statistically independent
I Model errors are additive
I Errors are normally distributed
I Errors have constant standard deviation
I Effects of errors are additive

I All boils down to independent, normally distributed
observations with constant variance
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2k r Designs Verification

Testing for Independent Errors

I Compute residuals and make scatter plot
I Trends indicate dependence of errors on factor levels

I But if residuals order of magnitude below predicted response,
trends can be ignored

I Usually good idea to plot residuals vs. experiment number
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2k r Designs Verification

Example Plot of Residuals vs. Predicted Response
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2k r Designs Verification

Testing for Normally Distributed Errors

I As usual, do quantile-quantile chart against normal
distribution

I If close to linear, normality assumption is good
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2k r Designs Verification

Quantile-Quantile Plot for Example
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2k r Designs Verification

Assumption of Constant Variance

I Checking homoscedasticity
I Go back to scatter plot of residuals vs. prediction and check

for even spread

25 / 44

Assumption of Constant Variance

I Checking homoscedasticity
I Go back to scatter plot of residuals vs. prediction and check

for even spread

20
15

-0
6-

15

CS147
2k r Designs

Verification
Assumption of Constant Variance



2k r Designs Verification

The Scatter Plot, Again
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Multiplicative Models

Multiplicative Models for 22r Experiments

I Assumptions of additive models
I Example of a multiplicative situation
I Handling a multiplicative model
I When to choose multiplicative model
I Multiplicative example
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Multiplicative Models

Assumptions of Additive Models

I Previous analysis used additive model:
I yij = q0 + qAxA + qBxB + qABxAxB + eij

I Assumes all effects are additive:
I Factors
I Interactions
I Errors

I This assumption must be validated!
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Multiplicative Models

Example of a Multiplicative Situation

I Testing processors with different workloads
I Most common multiplicative case
I Consider 2 processors, 2 workloads

I Use 22r design
I Response is time to execute wj instructions on processor that

requires vi seconds/instruction
I Without interactions, time is yij = viwj
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Multiplicative Models

Handling a Multiplicative Model

I Take logarithm of both sides:

yi j = viwj

so log yij = log vi + log wj

I Now easy to solve using previous methods
I Resulting model is:

y = 10q010qAxA10qBxB 10qABxAB 10e
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Multiplicative Models

Meaning of a Multiplicative Model

I Model is 10q010qAxA10qBxB 10qABxAB 10e

I Here, µA = 10qA is inverse of ratio of MIPS ratings of
processors; µB = 10qB is ratio of workload sizes

I Antilog of q0 is geometric mean of responses:

ẏ = 10q0 = n
√

y1y2 · · · yn

where n = 22r
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Multiplicative Models

When to Choose a Multiplicative Model?

I Physical considerations (see previous slides)
I Range of y is large

I Making arithmetic mean unreasonable
I Calling for log transformation

I Plot of residuals shows large values and increasing spread
I Quantile-quantile plot doesn’t look like normal distribution
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Multiplicative Models Example

Multiplicative Example

I Consider additive model of processors A1 & A2 running
benchmarks B1 and B2:

y1 y2 y3 Mean I A B AB
85.1 79.5147.9104.167 1 -1 -1 1

0.8911.0471.072 1.003 1 1 -1 -1
0.9550.9331.122 1.003 1 -1 1 -1
0.0150.0130.012 0.013 1 1 1 1

Total 106.19-104.15-104.15102.17
Total/4 26.55 -26.04 -26.04 25.54

I Note large range of y values
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Multiplicative Models Example

Error Scatter of Additive Model
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Multiplicative Models Example

Quantile-Quantile Plot of Additive Model
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Multiplicative Models Example

Multiplicative Model

I Taking logs of everything, the model is:
y1 y2 y3 Mean I A B AB

1.93 1.9 2.17 2.000 1 -1 -1 1
-0.05 0.02 0.0302 0.000 1 -1 -1
-0.02 -0.03 0.05 0.000 -1 1 -1
-1.83 -1.9 -1.928 -1.886 1 1 1 1

Total 0.11 -3.89 -3.89 0.11
Total/4 0.03 -0.97 -0.97 0.03
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Multiplicative Models Example

Error Residuals of Multiplicative Model
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Multiplicative Models Example

Quantile-Quantile Plot for Multiplicative Model
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Multiplicative Models Example

Summary of the Two Models

Additive Model Multiplicative Model

Factor Effect
Pct of

Variation
Confidence

Interval Effect
Pct of

Variation
Confidence

Interval

I 26.55 16.35 36.74 0.03 -0.02 0.07
A -26.04 30.15 -36.23 -15.85 -0.97 49.85 -1.02 -0.93
B -26.04 30.15 -36.23 -15.85 -0.97 49.86 -1.02 -0.93

AB 25.54 29.01 15.35 35.74 0.03 0.04 -0.02 0.07
e 10.69 0.25
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General 2k r Designs

General 2k r Factorial Design

I Simple extension of 22r
I See Box 18.1 in book for summary
I Always do visual tests
I Remember to consider multiplicative model as alternative
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General 2k r Designs

Example of 2k r Factorial Design

Consider a 233 design:

y1 y2 y3 Mean I A B C AB AC BC ABC
14 16 12 14 1 -1 -1 -1 1 1 1 -1
22 18 20 20 1 1 -1 -1 -1 -1 1 1
11 15 19 15 1 -1 1 -1 -1 1 -1 1
34 30 35 33 1 1 1 -1 1 -1 -1 -1
46 42 44 44 1 -1 -1 1 1 -1 -1 1
58 62 60 60 1 1 -1 1 -1 1 -1 -1
50 55 54 53 1 -1 1 1 -1 -1 1 -1
86 80 74 80 1 1 1 1 1 1 1 1

Total 319 67 43 155 23 19 15 -1
Total/8 39.88 8.38 5.38 19.38 2.88 2.38 1.88 -0.13
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General 2k r Designs

ANOVA for 233 Design

I Percent variation explained:

A B C AB AC BC ABC Errors
14.1 5.8 75.3 1.7 1.1 0.7 0 1.37

I 90% confidence intervals

I A B C AB AC BC ABC
38.7 7.2 4.2 18.2 1.7 1.2 0.7 -1.3
41.0 9.5 6.5 20.5 4.0 3.5 3.0 1.0
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General 2k r Designs

Error Residuals for 233 Design
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General 2k r Designs

Quantile-Quantile Plot for 233 Design
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