
CS 105
Malloc Lab: Writing a Dynamic Storage Allocator

See Web page for due date

1 Introduction

In this lab you will be writing a dynamic storage allocator for C programs, i.e., your own version of the
malloc, free and realloc routines. You are encouraged to explore the design space creatively and
implement an allocator that is correct, efficient and fast.

2 Logistics

As usual, you must work in pairs. Any clarifications and revisions to the assignment will be e-mailed to the
class list or posted on the course Web page.

3 Handout Instructions

Start by downloading malloclab-handout.tar from the Web page to a protected directory in which
you plan to do your work. Then give the command: tar xvf malloclab-handout.tar. This
will cause a number of files to be unpacked into the directory. The only file you will be modifying and
handing in is mm.c. The mdriver.c program is a driver program that allows you to evaluate the perfor-
mance of your solution. Use the command make to generate the driver code and run it with the command
./mdriver -V. (The -V flag displays helpful summary information.)

As with other labs, mm.c contains a C structure named team, which you should fill in with information
about your programming team. Do this right away so you don’t forget.

When you have completed the lab, you will submit only one file (mm.c), which contains your solution.

4 How to Work on the Lab

Your dynamic storage allocator will consist of the following four functions, which are declared in mm.h
and defined in mm.c.

1



int mm_init(void);
void *mm_malloc(size_t size);
void mm_free(void *ptr);
void *mm_realloc(void *ptr, size_t size);

The mm.c file we have given you implements the simplest but still functionally correct malloc package that
we could think of. Using this as a starting place, modify these functions (and possibly define other private
static functions), so that they obey the following semantics:

• mm init: Before calling mm malloc mm realloc or mm free, the application program (i.e.,
the trace-driven driver program that you will use to evaluate your implementation) calls mm init to
perform any necessary initialization, such as allocating the initial heap area. The return value should
be 0 if all was OK, and -1 if there was a problem during initialization.

Note: mm init may be called more than once by the driver. It should not remember any external
state, and should not assume that it is only called once. Each call to mm init should reset the
allocator, forgetting everything that has gone before.

• mm malloc: The mm malloc routine returns a pointer to an allocated block of at least size bytes.
The entire allocated block should lie within the heap region and should not overlap with any other
allocated chunk. Note that the returned value should point to the “payload”—the area available for
use by the caller—rather than to whatever header you might choose to put on the block.

We will comparing your implementation to the version of malloc supplied in the standard C library
(libc). The libc malloc always returns payload pointers that are aligned to 8 bytes, which is
excessive on Linux; your malloc implementation can gain a few utilization points by aligning only
to 4 bytes.

In the Linux specification, it is legal to allocate 0 bytes; your implementation should behave gracefully
in this case. It is up to you whether to return NULL or to return a non-NULL pointer that can legally
be passed to mm free.

• mm free: The mm free routine frees the block pointed to by ptr. It returns nothing. This rou-
tine is only guaranteed to work when the passed pointer (ptr) was returned by an earlier call to
mm malloc or mm realloc and has not yet been freed.

In the Linux specification, NULL can be passed to free. You can write mm free to accept NULL
pointers, but the test driver will never exercise this case.

• mm realloc: The mm realloc routine returns a pointer to an allocated region of at least size
bytes with the following constraints.

– If ptr is NULL, the call is equivalent to mm malloc(size);

– If size is equal to zero, the call is equivalent to mm free(ptr);

– If ptr is not NULL, it must have been returned by an earlier call to either mm malloc or
mm realloc. The call to mm realloc changes the size of the memory block pointed to by
ptr (the old block) to size bytes and returns the address of the new block. Notice that the

2



address of the new block might be the same as the old block, or it might be different, depending
on your implementation, the amount of internal fragmentation in the old block, and the size of
the realloc request.
The contents of the new block are the same as those of the old ptr block, up to the minimum of
the old and new sizes. Everything else is uninitialized. For example, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the new block are identical to the first 8
bytes of the old block and the last 4 bytes are uninitialized. Similarly, if the old block is 8 bytes
and the new block is 4 bytes, then the contents of the new block are identical to the first 4 bytes
of the old block.

These semantics match the the semantics of the corresponding libc malloc, realloc, and free rou-
tines. Type man malloc to the shell for complete documentation.

5 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beasts to program correctly and efficiently. They are
difficult to program correctly because they involve a lot of untyped pointer manipulation. You will find it
very helpful to write a heap checker that scans the heap and checks it for consistency.

Some examples of what a heap checker might check are:

• Is every block in the free list marked as free?

• Are there any contiguous free blocks that somehow escaped coalescing?

• Is every free block actually in the free list?

• Do the pointers in the free list point to valid free blocks?

• Do any allocated blocks overlap?

• Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the function int mm check(void) in mm.c. It will check any invari-
ants or consistency conditions you consider prudent. It returns a nonzero value if and only if your heap is
consistent. You are not limited to the listed suggestions nor are you required to check all of them. You are
encouraged to print out error messages when mm check fails.

This consistency checker is for your own debugging during development. When you submit mm.c, make
sure to remove any calls to mm check as they will slow down your throughput. Style points will be given
for your mm check function. Make sure to put in comments and document what you are checking.

6 Support Routines

The memlib.c package simulates the memory system for your dynamic memory allocator. You can invoke
the following functions in memlib.c:

3



• void *mem sbrk(int incr): Expands the heap by incr bytes, where incr is a positive
non-zero integer, and returns a generic pointer to the first byte of the newly allocated heap area. The
semantics are identical to the Unix sbrk function, except that mem sbrk accepts only a positive
non-zero integer argument. Note: your allocator should not assume that the memory returned by
mem sbrk has any particular contents. Specifically, the memory might not be initialized to zero.

• void *mem heap lo(void): Returns a generic pointer to the first byte in the heap.

• void *mem heap hi(void): Returns a generic pointer to the last byte in the heap.

• size t mem heapsize(void): Returns the current size of the heap in bytes.

• size t mem pagesize(void): Returns the system’s page size in bytes (4K on Linux systems).

7 The Trace-driven Driver Program

The driver program mdriver.c in the malloclab-handout.tar distribution tests your mm.c pack-
age for correctness, space utilization, and throughput. The driver program is controlled by a set of trace
files that are included in the malloclab-handout.tar distribution. Each trace file contains a sequence
of allocate, reallocate, and free commands that instruct the driver to call your mm malloc, mm realloc,
and mm free routines in some sequence. The driver and the trace files are the same ones we will use when
we grade your submission mm.c file.

The driver mdriver.c accepts the following command line arguments:

• -t <tracedir>: Look for the default trace files in directory tracedir instead of the default
directory compiled into the program.

• -f <tracefile>: Use one particular tracefile for testing instead of the default set of trace
files.

• -h: Print a summary of the command line arguments.

• -l: Run and measure libc malloc in addition to your own malloc package.

• -v: Verbose output. Print a performance breakdown for each trace file in a compact table.

• -V: More verbose output. Prints additional diagnostic information as each trace file is processed.
Useful during debugging for determining which trace file is causing your malloc package to fail.

8 Programming Rules

• You should not change any of the interfaces in mm.c.

• You should not invoke any memory-management-related library calls or system calls. This excludes
the use of malloc, calloc, free, realloc, sbrk, brk, mmap, or any variants of these calls in
your code.

4



• You are not allowed to define any global or static compound data structures such as arrays, structs,
trees, or lists in your mm.c program. However, you are allowed to declare global scalar variables such
as integers, floats, and pointers in mm.c. You are also allowed to declare structs, as long as no static
or global space is allocated for them.

• Your allocator must always return pointers that are aligned to 4-byte boundaries. The driver will
enforce this requirement for you.

9 Evaluation

You will receive zero points if you break any of the rules or your code is buggy and crashes the driver.
Otherwise, your grade will be calculated as follows:

• Correctness (20 points). You will receive full points if your solution passes the correctness tests
performed by the driver program. You will receive partial credit for each correct trace.

• Performance (35 points). Two performance metrics will be used to evaluate your solution:

– Space utilization: The peak ratio between the aggregate amount of memory used by the driver
(i.e., allocated via mm malloc or mm realloc but not yet freed via mm free) and the size
of the heap used by your allocator. The optimal ratio equals to 1. You should find good policies
to minimize fragmentation in order to make this ratio as close as possible to the optimal.

– Throughput: The average number of operations completed per second.

The driver program summarizes the performance of your allocator by computing a performance index,
P , which is a weighted sum of the space utilization and throughput

P = wU + (1− w) min
(

1,
T

Tlibc

)
where w = 0.6, U is your space utilization, T is your throughput, and Tlibc is the estimated throughput
of libc malloc on your system on the default traces.1 The purpose of the min is to keep you from
going overboard in trying to outperform the libc allocator. Note that the performance index favors
space utilization over throughput, since w > 0.5.

Since both memory and CPU cycles are expensive system resources, we adopted this formula to
encourage balanced optimization. Ideally, the performance index would reach 1.0 or 100%, though
that figure is unachievable in practice. Since each metric will contribute at most w and 1 − w,
respectively, to the performance index, you should not go to extremes to optimize either memory
utilization or throughput at the expense of the other. To receive a good score, you must achieve a
balance.

• Style (10 points).
1The value for Tlibc is a constant in the driver that was established when the lab was set up.

5



– Your code should be properly decomposed into functions and use as few static or global variables
as possible. (You will probably need at least one static to keep track of details about the heap.)

– Your code should begin with a header comment that describes the structure of your free and
allocated blocks, the organization of the free list, and how your allocator manipulates the free
list. Each function should be preceded by a header comment that describes what the function
does.

– Each function should have a header comment that describes what it does and how it does it.
– Your heap consistency checker mm check should be thorough and well-documented.

You will be awarded 5 points for a good heap consistency checker and 5 points for good program
structure and comments.

10 Submission Instructions

Submit only mm.c, using cs105submit. For convenience, typing “make submit” will submit for you.

You may submit your solution for testing as many times as you wish up until the due date. When you are
satisfied with your solution, submit it again. Only the last version you submit will be graded.

Note that the final grading will be done on Wilkes. While it is possible to run your allocator on other
machines (including your own), the score generated by mdriver may be different because of speed differ-
ences. Therefore, be sure to test your allocator on Wilkes to be sure you will get the grade you think you
deserve.

11 Hints

• Use the mdriver -f option. During initial development, using tiny trace files will simplify debug-
ging and testing. We have included two such trace files (short1,2-bal.rep) that you can use for
initial debugging.

• Use the mdriver -v and -V options. The -v option will give you a detailed summary for each
trace file. If you give -V instead, the driver will also indicate when each trace file is read, which will
help you isolate errors.

• Change your Makefile to replace -O2 with -g so you can use a debugger. A debugger will help
you isolate and identify out of bounds memory references. Only switch back to -O2 after your code
is working.

• Understand every line of the malloc implementation in the textbook. The textbook has a detailed
example of a simple allocator based on an implicit free list. Use this is a point of departure. Don’t
start working on your allocator until you understand everything about the simple implicit-list allocator.

• Encapsulate your pointer arithmetic in C preprocessor macros. Pointer arithmetic in memory man-
agers is confusing and error-prone because of all the type-casting that is necessary. You can reduce
the complexity significantly by writing macros for your pointer operations. See the text for examples.

6



• Do your implementation in stages. The first 9 traces contain requests to malloc and free. The
last 2 traces contain requests for realloc, malloc, and free. We recommend that you start by
getting your malloc and free routines working correctly and efficiently on the first 9 traces. Only
then should you turn your attention to the realloc implementation. For starters, build realloc
on top of your existing malloc and free implementations. But to get really good performance,
you will need to build a stand-alone realloc.

• Use a profiler. You may find the gprof tool helpful for optimizing performance.

• Start early! It is possible to write an efficient malloc package with a few pages of code. However, we
can guarantee that it will be some of the most difficult and sophisticated code you have written so far
in your career. So start early, and good luck!

7


