
CS 105
Lab 5: Code Optimization

See Calendar for Dates

1 Introduction

This assignment deals with optimizing memory-intensive code. Image processing offers many examples of
functions that can benefit from optimization. In this lab, wewill consider two image processing operations:
rotate, which rotates an image counter-clockwise by90◦, andsmooth, which “smooths” or “blurs” an
image.

For this lab, we will consider an image to be represented as a two-dimensional matrixM , whereMi,j

denotes the value of(i, j)th pixel of M . Pixel values are triples of red, green, and blue (RGB) values. We
will only consider square images. LetN denote the number of rows (or columns) of an image. Rows and
columns are numbered, in C-style, from0 to N − 1.

Given this representation, therotate operation can be implemented quite simply as the combination of
the following two matrix operations:

• Transpose: For each(i, j) pair,Mi,j andMj,i are interchanged.

• Exchange rows: Row i is exchanged with rowN − 1 − i.

This combination is illustrated in Figure 1.

Thesmooth operation is implemented by replacing every pixel value with the average of all the pixels
around it (in a maximum of3 × 3 window centered at that pixel). Consider Figure 2. The values of pixels
M2[1][1] andM2[N-1][N-1] are given below:

M2[1][1] =

∑

2

i=0

∑

2

j=0
M1[i][j]

9

M2[N− 1][N− 1] =

∑N−1

i=N−2

∑N−1

j=N−2
M1[i][j]

4

1



Rotate by 90 

(counter−clockwise)

Transpose
Exchange

Rows

j

i

i

j

i

j

(0,0)

(0,0)

(0,0)

Figure 1: Rotation of an image by90◦ counterclockwise

smooth

M1[1][1]

M1[N−1][N−1]

M2[1][1]

M2[N−1][N−1]

Figure 2: Smoothing an image

2



2 Logistics

You are to work in a group of two people in solving the problemsfor this assignment. The only “hand-in”
will be electronic. Any clarifications and revisions to the assignment will be posted on the lab Web page or
course email.

3 Handout Instructions

The materials for this lab are on the course web page.

Start by copyingperflab-handout.tar to a protected directory in which you plan to do your work.
Then give the command:tar xvf perflab-handout.tar. This will cause a number of files to be
unpacked into the directory. The only file you will be modifying and handing in iskernels.c. The
driver.c program is a driver program that allows you to evaluate the performance of your solutions.
Use the commandmake driver to generate the driver code and run it with the command./driver.
Note that you arenot allowed to change the Makefile, which also means you are not allowed to fiddle with
compiler switches.

Looking at the filekernels.c you’ll notice a C structure,team, into which you should insert the re-
quested identifying information about the two individualscomprising your programming team.Do this
right away so you don’t forget.

4 Implementation Overview

Data Structures

The core data structure deals with image representation. Apixel is a struct as shown below:

typedef struct {
unsigned short red; /* R value */
unsigned short green; /* G value */
unsigned short blue; /* B value */

} pixel;

As can be seen, RGB values have 16-bit representations (“16-bit color”). An imageI is represented as a one-
dimensional array ofpixels, where the(i, j)th pixel isI[RIDX(i,j,n)]. Heren is the dimension of the image
matrix, andRIDX is a macro defined as follows:

#define RIDX(i,j,n) ((i)*(n)+(j))

See the filedefs.h for this code.

Rotate

The following C function computes the result of rotating thesource imagesrc by 90◦ and stores the result in desti-
nation imagedst. dim is the dimension of the image.

3



void naive_rotate(int dim, pixel *src, pixel *dst)
{

int i, j;

for(i=0; i < dim; i++)
for(j=0; j < dim; j++)

dst[RIDX(dim-1-j,i,dim)] = src[RIDX(i,j,dim)];

return;
}

The above code scans the rows of the source image matrix, copying to the columns of the destination image matrix.
Your task is to rewrite this code to make it run as fast as possible using techniques like code motion, loop unrolling
and blocking.

See the filekernels.c for this code.

Smooth

The smoothing function takes as input a source imagesrc and returns the smoothed result in the destination image
dst. Here is part of an implementation:

void naive_smooth(int dim, pixel *src, pixel *dst)
{

int i, j;

for(i=0; i < dim; i++)
for(j=0; j < dim; j++)

dst[RIDX(i,j,dim)] = avg(dim, i, j, src); /* Smooth the (i,j)th pixel */

return;
}

The functionavg returns the average of all the pixels around the(i,j)th pixel. Your task is to optimizesmooth
(andavg) to run as fast as possible. (Note:The functionavg is a local function and you can get rid of it altogether to
implementsmooth in some other way.)

This code (and an implementation ofavg) is in the filekernels.c.

Performance measures

Our main performance measure isCPE or Cycles per Element. If a function takesC cycles to run for an image of
sizeN × N , the CPE value isC/N2. Table 1 summarizes the performance of the naive implementations shown
above and compares it against an optimized implementation.Performance is shown for 5 different values ofN . All
measurements were made on Wilkes, which is a Pentium III Xeonmachine.

The ratios (speedups) of the optimized implementation overthe naive one will constitute ascoreof your implementa-
tion. To summarize the overall effect over different valuesof N , we will compute thegeometric meanof the results
for these 5 values. That is, if the measured speedups forN = {32, 64, 128, 256, 512} areR32, R64, R128, R256, and

4



Test case 1 2 3 4 5

Method N 64 128 256 512 1024 Geom. Mean
Naiverotate (CPE) 22.1 21.6 27.6 79.8 220.9
Optimizedrotate (CPE) 8.0 8.6 14.8 22.1 25.3
Speedup (naive/opt) 2.8 2.5 1.9 3.6 8.7 3.1

Method N 32 64 128 256 512 Geom. Mean
Naivesmooth (CPE) 524 525 527 522 523
Optimizedsmooth (CPE) 41.5 41.6 41.2 53.5 56.4
Speedup (naive/opt) / 12.6 12.6 12.8 9.8 9.3 11.3

Table 1: Sample CPEs and Ratios for Optimized vs. Naive Implementations

R512 then we compute the overall performance as

R = 5

√

R32 × R64 × R128 × R256 × R512

Assumptions

To make life easier, you can assume thatN is a multiple of 32. Your code must run correctly for all such values ofN ,
but we will measure its performance only for the 5 values shown in Table 1 (note that the CPEs and speedups in this
table will not match those you’ll actually see).

5 Infrastructure

We have provided support code to help you test the correctness of your implementations and measure their perfor-
mance. This section describes how to use this infrastructure. The exact details of each part of the assignment is
described in the following section.

Note: The only source file you will be modifying iskernels.c.

Versioning

You will be writing many versions of therotate andsmooth routines. To help you compare the performance of
all the different versions you’ve written, we provide a way of “registering” functions.

For example, the filekernels.c that we have provided you contains the following function:

void register_rotate_functions()
{

add_rotate_function(&rotate, rotate_descr);
}

This function contains one or more calls toadd rotate function. In the above example,
add rotate function registers the functionrotate along with a stringrotate descr which is an ASCII

5



description of what the function does. See the filekernels.c to see how to create the string descriptions. This
string can be at most 256 characters long.

A similar function for your smooth kernels is provided in thefile kernels.c.

Driver

The source code you will write will be linked with object codethat we supply into adriver binary. To create this
binary, you will need to execute the command

unix> make driver

You will need to re-make driver each time you change the code in kernels.c. To test your implementations, you
can then run the command:

unix> ./driver

Thedriver can be run in four different modes:

• Default mode, in which all versions of your implementation are run.

• Autograder mode, in which only therotate() andsmooth() functions are run. This is the mode we will
run in when we use the driver to grade your handin.

• File mode, in which only versions that are mentioned in an input file arerun.

• Dump mode, in which a one-line description of each version is dumped toa text file. You can then edit this text
file to keep only those versions that you’d like to test using thefile mode. You can specify whether to quit after
dumping the file or if your implementations are to be run.

If run without any arguments,driver will run all of your versions (default mode). Other modes and options can be
specified by command-line arguments todriver, as listed below:

-g : Run onlyrotate() andsmooth() functions (autograder mode).

-f <funcfile> : Execute only those versions specified in<funcfile> (file mode).

-d <dumpfile> : Dump the names of all versions to a dump file called<dumpfile>, one lineto a version
(dump mode).

-q : Quit after dumping version names to a dump file. To be used in tandem with-d. For example, to quit
immediately after printing the dump file, type./driver -qd dumpfile.

-h : Print the command line usage.

Team Information

Important: Before you start, you should fill in the struct inkernels.c with information about your team (group
name, team member names and email addresses). This information is just like the one for the Data Lab.

6



6 Assignment Details

Optimizing Rotate (50 points)

In this part, you will optimizerotate to achieve as low a CPE as possible. You should compiledriver and then
run it with the appropriate arguments to test your implementations.

For example, running driver with the supplied naive version(for rotate) generates the output like that shown below:

unix> ./driver
Teamname: bovik
Member 1: Harry Q. Bovik
Email 1: bovik@nowhere.edu

Rotate: Version = naive_rotate: Naive baseline implementation:
Dim 64 128 256 512 1024 Mean
Your CPEs 14.6 40.9 46.8 63.5 90.9
Baseline CPEs 14.7 40.1 46.4 65.9 94.5
Speedup 1.0 1.0 1.0 1.0 1.0 1.0

Optimizing Smooth (50 points)

In this part, you will optimizesmooth to achieve as low a CPE as possible.

For example, running driver with the supplied naive version(for smooth) generates the output like that shown below:

unix> ./driver

Smooth: Version = naive_smooth: Naive baseline implementation:
Dim 32 64 128 256 512 Mean
Your CPEs 695.8 698.5 703.8 720.3 722.7
Baseline CPEs 695.0 698.0 702.0 717.0 722.0
Speedup 1.0 1.0 1.0 1.0 1.0 1.0

Grading

There are two things to consider in grading. First, theBasline CPEs are calculated by running the rotate and
smooth code with no performance modifications.Speedup is the critical factor for the grading program. The grading
formula is linear in the speedup, with a diminishing rate of return once you have gotten past a certain threshold, and a
maximum beyond which you only get bragging rights. The rulesare:

Rotate Grading
Speedup Range Points

1.0 < Rotate Speedup≤ 2.1 40 × (Speedup− 1.0)/(2.1 − 1.0)
2.1 < Rotate Speedup≤ 2.5 40 + 10 × (Speedup− 2.1)/(2.5 − 2.1)

2.5 < Rotate Speedup 50

7



Smooth Grading
Speedup Range Points

1.0 < Smooth Speedup≤ 2.5 40 × (Speedup− 1.0)/(2.5 − 1.0)
2.5 < Smooth Speedup≤ 5.0 40 + 10 × (Speedup− 2.5)/(5.0 − 2.5)

5.0 < Smooth Speedup 50

Some Advice

Look at the assembly code generated for therotate andsmooth. Focus on optimizing the inner loop (the code
that gets repeatedly executed in a loop) using the optimization tricks covered in class. You will find thatrotate is
sensitive to cache performance, and your best results will be gotten by considering that fact. Thesmooth function
is less memory-sensitive thanrotate, so the best optimizations are of somewhat different flavors. It may be worth
experimenting with the order of loops, or even running loopsbackwards. It can also help to make the most common
case run faster even if the less usual case runs slower.

Coding Rules

You may write any code you want, as long as it satisfies the following:

• It must be in ANSI C. You may not use any embedded assembly language statements.

• It must not interfere with the time measurement mechanism. You will also be penalized if your code prints any
extraneous information.

You can only modify code inkernels.c. You are allowed to define macros, additional global variables, and other
procedures in these files.You may not modify the Makefile .

Evaluation

Your solutions forrotate andsmooth will each count for 50% of your grade. The score for each will be based on
the following:

• Correctness: You will get NO CREDIT for buggy code that causes the driver to complain! This includes code
that correctly operates on the test sizes, but incorrectly on image matrices of other sizes. As mentioned earlier,
you may assume that the image dimension is a multiple of 32.

• CPE: You will get full credit for your implementations ofrotate andsmooth if they are correct and achieve
mean CPEs above thresholds2.5 and5.0 respectively. You will get partial credit for a correct implementation
that does better than the supplied naive one.

7 Handin Instructions

Usecs105submit on Wilkes or Knuth to hand your code in.

8



8 Notes on Measurement

The measurement techniques used by this lab are somewhat statistical. You can expect to get slightly different results
on different runs. Occasionally, larger variations may occur; if so, just try again before you conclude that your changes
were made a huge difference. To protect against this problem, we will run your solutions several times and choose the
best result.

9 Notes on GCC’s Optimization Techniques

The Gnu C Compiler has some “helpful” optimization behaviors that can make things confusing for you. Our strongest
advice for dealing with these problems is to look at the assembly code before you assume what’s going on in the
machine. You can generate relatively readable assembly inkernels.s by running “gcc -O2 -S kernels.c”.

For early optimization, it can be good to concentrate on the inner loop in the generated code; this can be found by
looking for backwards jumps.

9.1 Code Motion

Note that under some circumstances, the compiler will in fact move function calls out of loops. In particular, it may
do this for “max” and “min” calls.

9.1.1 Inlining

The most surprising thing the compiler may do for you is called inlining. Inlining is (basically) substituting the source
code of one function into another function that calls it. Forexample:

static int mean(int a, int b)
{

return (a + b) / 2;
}

static int loopy(int x[10][10], int y[10][10])
{

int i, j;
for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)
x[i][j] = mean(x[i][j], y[i][j]);

}

Under high optimization levels (including-O2), the compiler may decide to replace the “mean call with its actual
code, so that “loopy” would read (in effect):

static int loopy(int x[10][10], int y[10][10])
{

for (i = 0; i < 10; i++)
for (j = 0; j < 10; j++)

9



x[i][j] = (x[i][j] + y[i][j]) / 2;
}

The exact conditions for inlining are complex, but seemingly small changes to your code can cause the compiler to
change its mind in either direction. For example, if “mean” is called from only one place, it is more likely to be
inlined; adding another call in a different function can cause the inlining to go away.

Also, inlining can sometimes hurt performance. This happens most commonly when the compiler runs out of registers.
The current compiler behaves very badly when it is out of registers; sometimes it even generates code like this:

movl %eax, -88(%ebp)
movl -88(%ebp),%eax

and then never uses the value in-88(%ebp) again!

To control inlining, you can play around with the compiler’sview of the world. If you add the “inline” keyword to
a function declaration, you are telling the compiler you think it should be inlined:

static inline int mean(int a, int b)
{

...
}

This only works if “mean” is definedbeforeit is used.

Contrariwise, there are several ways to (try to)preventinlining. In order of probable effectiveness (we haven’t exper-
imented with all of these), they are:

• Compile with-fno-inline (this prevents inlining ofall functions). (This works in general, but won’t work
for this lab because we use our ownMakefile for grading.)

• Declare the function using the very ugly gcc attribute extension:

static int mean(int a, int b)
__attribute__ ((noinline))

{
...

}

(Note that the doubled parentheses are necessary.)

• Call the function from two or more different places. (Note: if one of the places is a dummy function that isn’t
actually used, the dummy must be global or the compiler will optimize it out of existence.)

• Declare the function as a global rather than a static:

int mean(int a, int b)
{

...
}

• Declare the function with a prototype before it is used, but define it only after all uses:

10



static int mean(int a, int b);

static int loopy(...)
{

...
}

static int mean(int a, int b)
{

...
}

11


