CS 105
The Buffer Bomb

Spring Semester, 2013

See calendar for lab and due dates

I ntroduction

This assignment helps you develop a detailed understardfitige calling stack organization on an x86
processor. It involves applying a serieshofffer overflow attacken an executable filebuf bonb in the
lab directory.

Important: In this lab, you will gain firsthand experience with one of thethods commonly used to

exploit security weaknesses in operating systems and netsasvers. Our purpose is to help you learn
about the runtime operation of programs and to understamdature of this form of security weakness so
that you can avoid it when you write system coée do not condone the use of these or any other form

of attack to gain unauthorized access to any system resources. There are criminal statutes governing
such activities.

Submission

Once again you will work in pairs in solving the problems foistassignment. The only “hand-in” will be
an automated logging of your successful attacks. Any datatifins and revisions to the assignment will be
posted on the course web page or announced on the mailing list

Handout I nstructions

First, download the filbuf | ab- handout . t ar from the course web page. Copy that file to a (protected)
directory in which you plan to do your work. Then give the coamd ‘t ar xvf buf | ab- handout -
. tar”. This will cause a number of files to be unpacked in the doBct

makecooki e: Generates a “cookie” based on your team name.
buf bonb: The code you will attack.
sendstri ng: A utility to help convert between string formats.

All of these programs are compiled to run on Linux machinaghé following instructions, we will assume
that you have copied the three programs to a protected laeadtdry, and that you are executing them in
that local directory.

Team Name and Cookie

You should create a team name for your group of the fofi*1D>" where ID; is the username of the
first team member anflD, is the username of the second team member. For a team wittdaribmber,
please just tell us that member’s name.

Choose a consistent ordering of the IDs in the second forreahtname. Teamg toe+bsmi t h”
and ‘bsm t h+j doe” are considered distinctYou must follow this scheme for generating your team
name. Our grading program will only give credit to those people whose usernames can be extracted

from the team names.

A cookieis a string of eight hexadecimal digits that is (with high lpability) unique to your team. You
can generate your cookie with timmkecooki e program giving your team name as the argument. For
example:

uni x>. / makecooki e j doe+bsnith
0x69d04aal

In four of your five buffer attacks, your objective will be toake your cookie show up in places where it
ordinarily would not.

Thebuf bonb Program

Thebuf bonb program reads a string from standard input with a funcgieh buf having the following C
code:

1 int getbuf()

2 {

3 char buf[12];
4 Get s(buf);

5 return 1,

6}

The functionGet s is similar to the standard library functiapet s—it reads a string from standard input
(terminated by\n’ or end-of-file) and stores it, along with a null terminatat the specified destination. In
this code, the destination is an arfayf having sufficient space for 12 characters.

NeitherGet s norget s has any way to determine whether there is enough space at¢stiaation to
store the entire string. Instead, they simply copy the erstiring, possibly overrunning the bounds of the
storage allocated at the destination.

If the string typed by the user et buf is no more than 11 characters long, it is clear thet buf
will return 1, as shown by the following execution example:

uni x>. / buf bonb
Type string: howdy doody
Dud: getbuf returned Ox1

Typically an error occurs if we type a longer string:

uni x>. / buf borb
Type string: This string is too |ong
Quch!: You caused a segnentation fault!

As the error message indicates, overrunning the buffecélyi causes the program state to be corrupted,
leading to a memory access error. Your task is to be morerclee the strings you feeduf bonb so that
it does more interesting things. These are cadbgploit strings.

Buf bonb takes several different command line arguments:

-t TEAM: Operate the bomb for the indicated team. You should alway@ghe this argument for several
reasons:

e Itis required to log your successful attacks.

e Buf bonb determines the cookie you will be using based on your teamepamst as does the
programnakecooki e.

e We have built features intouf bonb so that some of the key stack addresses you will need to
use depend on your team’s cookie.

- h: Print list of possible command line arguments
- n: Operate in “Nitro” mode, as is used in Level 4 below.

Your exploit strings will typically contain byte values thdo not correspond to the ASCII values for
printing characters. The prograsendst r i ng can help you generate thesav strings. It takes as input a
hex-formattedstring. In this format, each byte value is represented byn@wodigits. For example, the string
“012345” could be entered in hex format a80 31 32 33 34 35." (Recall that the ASCII code for
decimal digitx is 0x3z.) Non-hex digit characters are ignored, including the kdain the example shown.

If you generate a hex-formatted exploit string in the @bepl oi t . t xt , you can apply the raw string
to buf bonb in several different ways:

1. You can use a pipe to pass the string throsighdst r i ng and feed it directly tdouf bonb:
uni x>./sendstring < exploit.txt | ./bufbonb -t bovik
2. You can store the raw string in a file and use 1/O redirediosupply it tobuf bonb:

uni x>./sendstring < exploit.txt > exploit-raw.txt
uni x>. / buf bonb -t bovi k < exploit-raw txt

This approach can also be used when runtin§bonb from within gdb:

uni x>gdb buf borb
(gdb)run -t bovik < exploit-raw txt

One important point: your exploit string must not containebyalueOx0A at any intermediate position,
since this is the ASCII code for newling. WhenGet s encounters this byte, it will assume you intended
to terminate the stringSendst r i ng will warn you if it encounters this byte value.

When you correctly solve one of the levets)f bonb will automatically send an email notification to
our grading server. The server will test your exploit striagnake sure it really works, and it will update
the lab web page indicating that your team (listed by cook#s) completed this level.

Unlike the bomb lab, there is no penalty for making mistakeshis lab. Feel free to fire away at
buf bonmb with any string you like.

Level 0: Candle (10 pts)

The functionget buf is called withinbuf bonb by a functiont est having the following C code:

1 void test()

2 {

3 int val;

4 vol atile int |local = Oxdeadbeef;

5 val = getbuf();

6 [+ Check for corrupted stack =/

7 if (local != Oxdeadbeef) ({

8 printf("Sabotaged!: the stack has been corrupted\n”);
9

10 else if (val == cookie) {

11 printf("Boom : getbuf returned Ox¥%\n", val);
12 val i dat e(3);

13 }

14 el se {

15 printf("Dud: getbuf returned Ox%\n", val);
16 }

17 }

Whenget buf executes its return statement (line S@ft buf), the program ordinarily resumes execution
within functiont est (at line 7 of this function). Within the filduf bonb, there is a functiors moke
having the following C code:

voi d snoke()

{
printf("Snoke!: You called snmoke()\n");
val i dat e(0)
exit(0);

}

Your task is to gebuf bonb to execute the code fanoke whenget buf executes its return statement,
rather than returning tbest . You can do this by supplying an exploit string that overesithe stored
return pointer in the stack frame fget buf with the address of the first instruction $moke. Note that
your exploit string may also corrupt other parts of the stsiglte, but this will not cause a problem, since
snoke causes the program to exit directly.

Some Advice

e All the information you need to devise your exploit string fhis level can be determined by examin-
ing a diassembled version bfif bonb.

e Be careful about byte ordering.

e You might want to usgdb to step the program through the last few instructiongetf buf to make
sure it is doing the right thing.

e The placement obuf within the stack frame foget buf depends on which version gftc was
used to compilduf bonb. You will need to pad the beginning of your exploit string lwihe proper
number of bytes to overwrite the return pointer. The valddbese bytes can be arbitrary.

Level 1: Sparkler (20 pts)

Within the filebuf bonb there is also a functiohi zz having the following C code:

void fizz(int val)

{
if (val == cookie) {
printf("Fizz!: You called fizz(0Ox%)\n", val);
val idate(1);
} else
printf("Msfire: You called fizz(0x%)\n", val);
exit(0);
}

Similar to Level 0, your task is to gétuf bonb to execute the code fdri zz rather than returning to
t est. In this case, however, you must make it appedfritaz as if you have passed your cookie as its
argument. You can do this by encoding your cookie in the gppriate place within your exploit string.

Some Advice

e Note that the program won't really cdlli zz—it will simply execute its code. This has important
implications for where on the stack you want to place youikémo

Level 2: Firecracker (30 pts)

A much more sophisticated form of buffer attack involvesmying a string that encodes actual machine
instructions. The exploit string then overwrites the retpointer with the starting address of these instruc-
tions. When the calling function (in this caget buf) executes it et instruction, the program will start
executing the instructions on the stack rather than raigrniith this form of attack, you can get the pro-
gram to do almost anything. The code you place on the sta@dledctheexploitcode. This style of attack
is tricky, though, because you must get machine code ontst#ioi and set the return pointer to the start of
this code.

Within the filebuf bonb there is a functiolbang having the following C code:

i nt gl obal _value = 0;

voi d bang(int val)

{
i f (global _value == cookie) {
printf("Bang!: You set global _value to Ox%\n", gl obal_val ue);
val i date(2);
} else
printf("Msfire: global_value = 0x%\n", gl obal _val ue);
exit(0);
}

Similar to Levels 0 and 1, your task is to getif bonb to execute the code fdrang rather than
returning tot est . Before this, however, you must set global variapleobal _val ue to your team'’s
cookie. Your exploit code should sgt obal _val ue, push the address dfang on the stack, and then
execute a et instruction to cause a jump to the code fang.

5

Some Advice

e You can usegdb to get the information you need to construct your exploiingtr Set a break-
point within get buf and run to this breakpoint. Determine parameters such aadteess of
gl obal _val ue and the location of the buffer.

e Determining the byte encoding of instruction sequencesamngdhs tedious and prone to errors. You
can let tools do all of the work by writing an assembly code didataining the instructions and data
you want to put on the stack. Assemble this file wgthic and disassemble it withbj dunp. You
should be able to get the exact byte sequence that you wél agpphe prompt. (A brief example of
how to do this is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your maghyoer compiler, and even your team’s
cookie. Do all of your work on Wilkes, and make sure you in€elutie proper team name on the
command line tduf bonb.

e Our solution requires 16 bytes of exploit code. Fortunatilgre is sufficient space on the stack, be-
cause we can overwrite the stored valu&ebp. This stack corruption will not cause any problems,
sincebang causes the program to exit directly.

e Watch your use of address modes when writing assembly cod¢e that: novl $0x4, %eax
moves thevalue 0x00000004 into register¥eax; whereasrovl 0x4, % sax moves the value
at memory locatior0x00000004 into %eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

e Do not attempt to use eitherjanp or acal | instruction to jump to the code fdrang. These
instructions uses PC-relative addressing, which is véckytrio set up correctly. Instead, push an
address on the stack and usettled instruction.

Level 3: Dynamite (40 pts)

Our preceding attacks have all caused the program to jumpetaade for some other function, which
then causes the program to exit. As a result, it was acceptahlse exploit strings that corrupt the stack,
overwriting the saved value of regist#ebp and the return pointer.

The most sophisticated form of buffer overflow attack catkegprogram to execute some exploit code
that patches up the stack and makes the program return teigiead calling function { est in this case).
The calling function is oblivious to the attack. This styfeattack is tricky, though, since you must: 1) get
machine code onto the stack, 2) set the return pointer totéined this code, and 3) undo the corruptions
made to the stack state.

Your job for this level is to supply an exploit string that ixdhuseget buf to return your cookie back
tot est, rather than the value 1. You can see in the codd &st that this will cause the program to go
“Boonl .” Your exploit code should set your cookie as the return @atastore any corrupted state, push the
correct return location on the stack, and execute instruction to really return tbest .

Some Advice

e In order to overwrite the return pointer, you must also ovéenthe saved value éfebp. However, it
is important that this value is correctly restored befora y&turn tot est . You can do this by either
1) making sure that your exploit string contains the corkadtie of the save@ebp in the correct
position, so that it never gets corrupted, or 2) restore tneect value as part of your exploit code.
You'll see that the code fdrest has some explicit tests to check for a corrupted stack.

e You can useaydb to get the information you need to construct your exploingtr Set a breakpoint
within get buf and run to this breakpoint. Determine parameters such asatrel return address
and the saved value é&bp.

e Again, let tools such ascc andosibump do all of the work of generating a byte encoding of the
instructions.

e Keep in mind that your exploit string depends on your maghyoer compiler, and even your team’s
cookie. Do all of your work on Wilkes, and make sure you inelutie proper team name on the
command line tduf bonb.

Once you complete this level, pause to reflect on what you &esemplished. You caused a program to
execute machine code of your own design. You have done saufiieiently stealthy way that the program
did not realize that anything was amiss.

Level 4: Nitroglycerin (10 pts)

If you have completed the first four levels, you have earnddl ddints. You have mastered the principles
of the runtime stack operation, and you have gained firstieapérience with buffer overflow attacks. We
consider this a satisfactory mastery of the material. Yewaglcome to stop right now.

The next level is for those who want to push themselves beganaseline expectations for the course,
and who want to face a challenge in designing buffer overflitacks that arises in real life. This part of the
assignment only counts 10 points, even though it requirag afhount of work to do, so don'’t do it just for
the points.

From one run to another, especially by different users, Raetestack positions used by a given pro-
cedure will vary. One reason for this variation is that theuga of all environment variables are placed
near the base of the stack when a program starts executingroiment variables are stored as strings,
requiring different amounts of storage depending on thaines. Thus, the stack space allocated for a given
user depends on the settings of his or her environment VeasiaBtack positions also differ when running a
program undegdb, sincegdb uses stack space for some of its own state.

In the code that callget buf , we have incorporated features that stabilize the stadkagdhe position
of get buf ’s stack frame will be consistent between runs. This madessible for you to write an exploit
string knowing the exact starting addressbeff and the exact saved value @bp. If you tried to use
such an exploit on a normal program, you would find that it vsaskme times, but it causes segmentation
faults at other times. Hence the name “dynamite”—an expéodeveloped by Alfred Nobel that contains
stabilizing elements to make it less prone to unexpectetbsiqms.

For this level, we have gone the opposite direction, makiegstack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an exploghat is notoriously unstable.

When you runbuf bonb with the command line flag-“n,” it will run in “Nitro” mode. Rather than
calling the functiorget buf , the program calls a slightly different functiget buf n:

7

i nt getbufn()

{
char buf[512];
Get s(buf);
return 1;

}

This function is similar toget buf , except that it has a buffer of 512 characters. You will ndesl t
additional space to create a reliable exploit. The codedhldd get buf n first allocates a random amount
of storage on the stack (using library functiahl oca) that ranges between 0 and 127 bytes. Thus, if you
were to sample the value éebp during two successive executions @ét buf n, you would find they
differ by as much as-127.

In addition, when run in Nitro moddyuf bonb requires you to supply your string 5 times, and it will
executeget buf n 5 times, each with a different stack offset. Your exploitrgfrmust make it return your
cookie each of these times.

Your task is identical to the task for the Dynamite level. ®again, your job for this level is to supply
an exploit string that will causget buf n to return your cookie back to test, rather than the value 1 Yo
can see in the code for test that this will cause the progrago tiK<ABOOM .” Your exploit code should
set your cookie as the return value, restore any corrupéde, giush the correct return location on the stack,
and execute aet instruction to really return tbest n.

Some Advice

e You can use the prograsendst r i ng to send multiple copies of your exploit string. If you have a
single copy in the filexpl oi t . t xt , then you can use the following command:

uni x>./sendstring -n 5 < exploit.txt | ./bufbonb -n -t bovik

You MUST use the same string for all 5 executiongget buf n. Otherwise it will fail the testing
code used by our grading server.

e The trick is to make use of theop instruction. It is encoded with a single byte (ca@ge90). You
can place a long sequence of these at the beginning of yoloitespde so that your code will work
correctly if the initial jump lands anywhere within the seqae.

e You will need to restore the saved value% #bp in a way that is insensitive to variations in stack
positions.

L ogistical Notes

Hand in occurs automatically whenever you correctly solievel. The program sends email to our grading
server containing your team name (be sure to set ¢ tommand line flag properly) and your exploit
string to the grading server. You will be informed of thistyf bonb. Upon receiving the email, the server
will validate your string and update the lab web page. Yowshaoheck this page a few minutes after your
submission to make sure your string has been validated.o(frgally solved the level, your strirghould
be valid!)

Note that each level is graded individually. You do not needd them in the specified order, but you
will get credit only for the levels for which the server reces a valid message.
Have fun!

Cheating theLab

On certain levels, you may discover that you can outsmatiathend come up with a simpler solution that
still causes the grading server to accept what you did. Yemalcome to experiment to discover this trick.
However, for three reasons we ask that you do not use theasiglour final solution for that level:

1. You won't learn as much as you will be doing it the “right” yva

2. Later levels aren't susceptible to the same trick, soliygust wind up having to come up with the
proper solution later, in a more difficult setting.

3. It's an honor-code violation.

Generating Byte Codes

Usinggcc as an assembler adbj dunp as a disassembler makes it convenient to generate the lnge co
for instruction sequences. For example, suppose we writke &Xianpl e. s containing the following
assembly code:

Exanpl e of hand-generated assenbly code

pushl $0x89abcdef # Push val ue onto stack

addl $17, %eax # Add 17 to Y%eax

.align 4 # Following will be aligned on nultiple of 4
.long Oxfedcbha98 # A 4-byte constant

.long 0x00000000 # Paddi ng

The code can contain a mixture of instructions and data. Wngtto the right of a#’ character is a
comment. We have added an extra word of all Os to work arouhdrc®ming inoBJDUMPtO be described

shortly.
We can now assemble and disassemble this file:

uni x>gcc -c exanple.s
uni x>obj dunp -d exanple.o > exanple.d

The generated filexanpl e. d contains the following lines

0: 68 ef cd ab 89 push $0x89abcdef

5: 83 c0 11 add $0x11, %eax

8: 98 cwt | Objdunp tries to interpret
9: ba dc fe 00 00 nov $0xf edc, ¥&€dx these as instructions

Each line shows a single instruction. The number on thenelitates the starting address (starting with 0),
while the hex digits after the ° character indicate the byte codes for the instruction. STle can see that
the instructiorpushl $0x89ABCDEF has hex-formatted byte co@8 ef cd ab 89.

Starting at address 8, the disassembler gets confusei@slitdrinterpret the bytes in the filxanpl e. o
as instructions, but these bytes actually correspond ta. datote, however, that if we read off the 4

9

bytes starting at address 8 we g&8 ba dc fe. This is a byte-reversed version of the data word
OxFEDCBA98. This byte reversal represents the proper way to supply yteskas a string, since a lit-

tle endian machine lists the least significant byte first.eNa$o that it only generated two of the four bytes
at the end with valu@0. Had we not added this paddinghj dunp gets even more confused and does not

emit all of the bytes we want.
Finally, we can read off the byte sequence for our code (omwithe final 0’'s) as:

68 ef cd ab 89 83 cO 11 98 ba dc fe

10

