CS 105
Tour of the Black Holes of Computing

Cache Memories

Topics
= Generic cache-memory organization
m Direct-mapped caches
m Set-associative caches
= Impact of caches on performance

HC_CS)y
n

Locality ;
O

Principle of Locality: Programs tend to use data and instructions with
addresses equal or near to those they have used recently
Temporal locality: < 7
» Recently referenced items are likely |
to be referenced again in the near future
Spatial locality: D:El:]:;
m ltems with nearby addresses tend
to be referenced close together in time
CsS105

€5,
»

Locality Example

sum = 0;

for (i = 0; i < n; i++)

sum += al[i];

return sum;

Data references

n Reference array elements in Spatial locality
succession (stride-1 reference pattern).
n Reference variable sum each iteration. Temporal locality

Instruction references
= Reference instructions in sequence. Spatial locality
m Cycle through loop repeatedly. Temporal locality

CsS105

€5,
»

Qualitative Estimates of Locality :
O

Claim: Being able to look at code and get a qualitative sense of its locality
is a key skill for a professional programmer.

Question: Does this function have good locality with respect to array a?

int sum_array_rows (int a[M] [N])

{
int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i] [j];
return sum;

CsS105

€S}y
n

Locality Example :
O

Question: Does this function have good locality with respect to array a?

int sum_array_cols (int a[M] [N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += a[i] []];
return sum;

5 cs105

HC_CS)y
n

Cache Memories

Cache memories are small, fast SRAM-based memories managed
automatically in hardware
= Hold frequently accessed blocks of main memory

CPU looks first for data in cache, then in main memory
Typical system structure:

CPU chip

Cache
memory
I System bus Memory bus
- = 70 l Main
Bus interface N
bridge memory|

_10- cs105

Register file

=

€S}y
n

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach Block b is in cache:
e (GO b
Memory 1 [To 1 J[2][3]
Lall s I[s [7]
[8][o J[20][1n]
[[12 J[13 |[14 |[15 |
0000000000 OOONONONOIDS

—12- CS105

HC_CS)y
n

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Block b is not in cache:
S i v [|
Miss!
Block b is fetched from
II' Request: 12
memory
M Block b is stored in cache
emory
l 0 " 1 ” 2 " 3 l * Placement policy:
| 4 " 5 || 6 " 7 | determines where b goes
[s][9 J[10][11] * Replacement policy:
2 [3 |[s |[15 | determ.ines which block
gets evicted (victim)
09000000000 OOONONONONGDS
13- cs105

€S}y
n

General Caching Concepts:
Types of Cache Misses

Cold (compulsory) miss

HC_CS)y
n

General Cache Organization (S, E, B)

Not always power of 2!

E lines per set

m Cold misses occur because the cache is empty. r A ~
——

Conflict miss [I[ooee] o

m Most caches limit blocks at level k+1 to a small subset (sometimes a singleton) of | [Jeeee] |

the block positions at level k Set # = hash code
e E.g. Block i at level k+1 must go in block (i mod 4) at level k S=2¢sets [Il Jooeef
= Conflict misses occur when the level k cache is large enough, but multiple data Tag = hash key
objects all map to the same level k block ceececcecceccescccceccccccne
e E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time | ” |. e | |

Capacity miss

= Occurs when set of active cache blocks (working set) is larger than the cache Cache size:

C =S x E x B data bytes
[v] [tee] [o]2[2]-Tea]
— 14— CS105 -15— valid bit B = 2" bytes per cache block (the data) CS105
[HMIC_CS), HMIC_CS))
) H)
Cache Read s toeste set ‘ Example: Direct Mapped Cache (E = 1) :
* Check if any line in set O
has matching tag . .
E = 2¢ lines per set * Yes + line valid: hit Direct mapped: One Il.ne per set
- N - *Locate data starting Assume cache block size 8 bytes
at offset
I ” |. e .l I Addr £ word: r Address of int:
O] e [N G CLEBEGET] el os [9]
s bits
s=2sets [I Jowes| | T e |E|| tag ||o|1|2|3|4|5|e|7||—FindsJt

index offset

®e0cccccccccccccccccccccce

data begins at this offset

| G Ll—Te=]]

valid bit
- 16— B = 2P bytes per cache block (the data) CS105

S =25sets

|M G PEEGLEGED)|

©ecccccccccccccccccce

|| Gz ELEEEEEED)|

—17— CsS105

€S}y
n

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume cache block size 8 bytes

Address of int:

thits 100

Valid? + Match: both yes = hit

|
[
|l G CLEEGLEGE]
|

Block offset

18- cs105

THNC CS)
3

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume cache block size 8 bytes

Address of int:

Valid? + Match: both yes = hit

|
[
|l G CLEGLEGLER]

Block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced

_19- cs105

€S}y
n

Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

Set0 | 1 0 M[0-1]
Set1
Set 2
Set3 | 1 0 M[6-7]
—20- CS105

THNC CS)
3

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume cache block size 8 bytes

Address of short int:

[G CEEEEEED) [Cood BLEGLEGED)]
[& G CEEEEEED) [Ceod BEEGEGED)]
[© = CEEEEEED) [Lol BEEREGED)]

®eecc0000c00cc000000000000000000000000000000

| Cee] GEEGLEEH| | Coel CEEEREEEE)|

Find set

—21— CsS105

€S}y
n

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume cache block size 8 bytes

Address of short int:

Compare both|

Valid? + [Match: both yes = hit

|
| Cee] LEEELEEED])| | Cee] REEEREEED|

Block offset

—22- CS105

HC_CS)y
n

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume cache block size 8 bytes

Address of short int:

Compare both|

Valid? + | Match: both yes = hit

|
[o) CLEEEEED) [Ceol PEEGLEED]]

block offset
short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement

* Replacement policies: random, least recently used (LRU), ...
—23— CsS105

HNC_ (53

)

2-Way Set-Associative Cache Simulation

- M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
(] [0000,] hit

v Tag Block

seto [L_[00 [M[0-1]]

Set1
- [I csios

HC_CS)y
n

What About Writes?

Multiple copies of data exist:
m L1, L2, L3, Main Memory, Disk
What to do on a write hit?
m Write-through (write immediately to memory)
m Write-back (defer write to memory until replacement of line)
o Need a “dirty” bit (line different from memory or not)
What to do on a write miss?
m Write-allocate (load into cache, update line in cache)
e Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)
Typical
m Write-through + No-write-allocate

m Write-back + Write-allocate
25— cs105

€S}y
n

Intel Core i7 Cache Hierarchy

Processor package
Core 0

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

- Block size: 64 bytes for
L3 unified cache
‘ (shared by all cores) ‘ all caches.

’ Main memory ‘

— 26— CS105

HC_CS)y
n

Cache Performance Metrics

Miss Rate

= Fraction of memory references not found in cache
(misses / accesses) = 1 — hit rate
m Typical numbers (in percentages):
® 3-10% for L1
® Can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
= Time to deliver a line in the cache to the processor
® Includes time to determine whether line is in the cache
= Typical numbers:
® 4 clock cycles for L1
® 10 clock cycles for L2
Miss Penalty
m Additional time required because of a miss
® Typically 50-200 cycles for main memory

—27- CsS105

€S}y
n

Let’s Think About Those Numbers

Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

Would you believe 99% hits is twice as good as 97%?

= Consider:
Cache hit time of 1 cycle
Miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles
This is why “miss rate” is used instead of “hit rate”

—28— CS105

HC_CS)y
n

Writing Cache-Friendly Code

Make the common case go fast
m Focus on the inner loops of the core functions

Minimize misses in the inner loops
m Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Qur qualitative notion of locality is quantified
by our understanding of cache memories

—29— CsS105

The Memory Mountain

Aggressive
prefetching |

16000
14000
12000 +
10000

8000 {8

Read throughput (MB/s)

6000
4000

2000

spatial
locality 7
Stride (x8 bytes) s9

—32-

! v125k

Core i7 Haswell
2.1 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Ridges
|- of temporal
- locality

a2k

Size (bytes)

HC_CS)y
)

Cs105

HNC_CS})

Matrix-Multiplication Example ik

Description:

©)

Variable sum

= Multiply N x N matrices

= Matrix elements are doubles (8 bytes)
= O(N?) total operations

= N reads per source element

= N values summed per destination
e But may be able to keep in register

/* ijk */ held in register
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) [{
sum = 0.0; «—mmmm
for (k = 0; k < n; k++)
sum += a[i] [k] * b[k][]];
cl[i]l[j] = sum;

matmult/mm.c

—33- CsS105
HNC_CS}) HNC_CS})
. . . . 3 . . 3
Miss-Rate Analysis for Matrix Multiply T Layout of C Arrays in Memory (review) A%
- . . @

Assume: C arrays allocated in row-major order

= Block size = 32B (big enough for four doubles) = Each row in contiguous memory locations

m Matrix dimension (N) is very large Stepping through columns in one row:

e Approximate 1/N as 0.0 mfor (i = 0; i < N; i++)

= Cache is not even big enough to hold multiple rows sum += a[0][i];

Analysis Method: u Accesses. success!ve elements . . .
i u If block size (B) > sizeof(a;) bytes, exploit spatial locality
m Look at access pattern of inner loop o Miss rate = sizeof(a,) / B
Stepping through rows in one column:
j -— k 3 m for (i = 0; i < n; i++)
— x sum += a[i][0];
i I i I = Accesses distant elements
= No spatial locality!
c A B ® Miss rate = 1 (i.e. 100%)

—34-— CS105 -35—

CsS105

Matrix Multiplication (ijk)

/* ijk */
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
sum = 0.0;
for (k = 0; k < n; k++)
sum += a[i] [k] * b[k][]];
c[i][3] = sum;

€S}y
n

Inner loop:
(*)

=it
|

Matrix Multiplication (jik)

/* 3ik */
for (j = 0; j <n; j++) {
for (i = 0; i < n; i++) {
sum = 0.0;
for (k = 0; k < n; k++)
sum += a[i] [k] * b[k][]];
c[i][3] = sum

HC_CS)y
n

Inner loop:
(*)

=i
A B

C

]

} TG Row-wise Column- Fixed } TG Row-wise Column- Fixed
wise wise
Misses per inner loop iteration: Misses per inner loop iteration:
A B C A B C
0.25 1.0 0.0 0.25 1.0 0.0
~36- cs105 -37- cs105
[HMIC_CS), HAC_C§))
- T - - 3 - T - g 3
Matrix Multiplication (kij) Matrix Multiplication (ikj) :
7% ki3 %/ /¥ ikj */
for (k = 0; k < n; k++) { Inner loop: for (i = 0; i < n; i++) { Inner loop
for (i = 0; i < n; i++) { (*,j) for (k = 0; k < n; k++) { (*,j)
r = a[il [k]; (k,*) L, r = a[il [k]; (k,*) L,
for (3 = 0; j < n; 3++) (") for (3 = 0; 3 < n; 3j++) (")
c[i][j] += r * b[k][3j]; A B C c[i][j] += r * b[k][3j]; A B C
} }
} }
TG Fixed Row-wise Row-wise AT Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

—38-

CS105

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

—39-

CsS105

Matrix Multiplication (jki)

/* 3ki */
for (j = 0; j < n; j++) {
for (k = 0; k < n; k++) {
r = b[k][]l;
for (i = 0; i < n; i++)
c[i] [j] += a[il[k] * «r;

matmult/mm.c

Misses per inner loop iteration:

A B ¢
1.0 0.0 1.0

— 40—

€S}y
n

Inner loop:
(*,k) (*.J)
A C
Column- Fixed Column-
wise wise

CS105

Matrix Multiplication (kiji)

/* k3ji */
for (k = 0; k < n; k++) {
for (j = 0; j < n; j++) {
r = blk]1[3jl;
for (i = 0; i < n; i++)
c[i][3] += a[il[k] * r;

matmult/mm.c

Misses per inner loop iteration:

A B ¢
1.0 0.0 1.0

—41—

Inner loop:

(*k)

A

l

Column-
wise

HC_CS)y
n

Fixed Column-
wise

CsS105

Summary of Matrix Multiplication

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
sum = 0.0;
for (k = 0; k < n; kt+)

sum += a[i] [k] * b[k][3j];

c[i][3] = sum;

}

}

for (k = 0; k < n; k++) {
for (i = 0; i < n; i++) {
r = a[i] [k];
for (3 = 0; j < n; j++)
cl[il[3] += r * b[k]1[3];
}
}

for (j = 0; j < n; j++) {
for (k = 0; k < n; k+) {
r = b[k][]];
for (i = 0; i < n; it+)
c[i][3] += a[il[k] * r;

42—)

€5,
»

ijk (& jik):
* 2 loads, O stores

* Misses/iter = 1.25

kij (& ikj):
* 2 loads, 1 store

¢ Misses/iter = 0.5

jki (& kji):
* 2 |oads, 1 store

* Misses/iter = 2.0
CS105

Better Matrix Multiplication

€5,
»

/* Multiply n x n matrices a and b

int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k#+)

c = (double *) calloc(sizeof (double), n*n);

void mmm(double *a, double *b, double *c, int n)

c[i*n + j] += a[i*n + k] * b[k*n + j];

— 43—

CsS105

Cache Miss Analysis

Assume:
= Matrix elements are doubles
m Cache block = 8 doubles
= Cache size C << n (much smaller than n)

€S}y
n

Cache Miss Analysis

Assume:
= Matrix elements are doubles
m Cache block = 8 doubles
= Cache size C << n (much smaller than n)

HC_CS)y
n

First iteration: . — Second iteration: - —
= n/8 + n = 9n/8 misses = m Again: = %
n/8 + n = 9n/8 misses
8 wide
m Afterwards in cache: _ Total misses:
(schematic) u On/8 * n2 = (9/8) * nd
—44- 8 wide CS105 —45- CS105
[HMIC_CS), HMIC_CS))
- - - -) - - :
Blocked Matrix Multiplication Cache Miss Analysis ‘
c = (double *) calloc(sizeof (double), n*n); Assume:
/* Multiply n x n matrices a and b */ = Cache block = 8 doubles
void mmm(double *a, double *b, double *c, int n) {
int i, j, k; m Cache size C << n (much smaller than n)
e @ o 0p & Smp & o=) u Three blocks B fit into cache: 3B2< C
for (j = 0; j <n; j += B)
23 3o 0p B Say B IS5 First (block) iteration: n/B blocks

for (il = i; il < i+B; i++)
for (31 = 3j; 31 < 3+B; F++)
for (k1 = k; k1 < k+B; ki++)

/* B x B mini matrix multiplications */

c[il*n + jl] += a[il*n + k1l]*b[kl*n + jl];
matmult/bmm.c

1
c a b c
= * +
u (]] |

A
—46- Block size Bx B

CS105

= B2/8 misses for each block

u 2n/B * B%/8 = nB/4 E
(omitting matrix c)

m Afterwards in cache |
(schematic)

—47-

:
h

Block size Bx B
L[]]

= *

CsS105

HNC_ (53

{HMC €S}y

Blocking Summary o{ %}

- -)
Cache Miss Analysis SEY
o o

Assume: No blocking: (9/8) * n3

m Cache block = 8 doubles Blocking: 1/(4B) * n3

m Cache size C << n (much smaller than n)) .

= Three blocks M fit into cache: 3B2<C (plus n?/8 misses for C)
Second (block) iteration: n/B blocks

= Same as first iteration — Suggest largest possible block size B, but limit 3B2 < C!

u 2n/B * B%/8 = nB/4 L

E3
Reason for dramatic difference:
Total misses: . m Matrix multl;?llcztlon has |r'1herent temporal locality:
N Block size Bx B o Input data: 3n2, computation 2n?®
= nB/4* (n/B)? = n3/(4B) e Every array element used O(n) times!
= But program has to be written properly
— 48— CS105 —49— Cs105
[HMIC_CS),
Cache Summary A%
&)

Cache memories can have significant performance impact

You can write your programs to exploit this!

m Focus on the inner loops, where bulk of computations and memory accesses occur.
= Try to maximize spatial locality by reading data objects with sequentially with stride

1.

= Try to maximize temporal locality by using a data object as often as possible once

it’s read from memory.

—50—

CS105

