CS 105

Machine-Dependent Optimization o

“Tour of the Black Holes of Computing” Need to understand the architecture
Not portable
Machine-Dependent Optimization Not often needed
...but critically important when it is
Also helps in understanding modern machines
_o- CS 105
HMC_C)y MC_C8)y
=))
Modern CPU Design {2 Superscalar Processor 7
O O
Instruction Control Definition: A superscalar processor can issue and execute multiple
---------------- Address instructions in one cycle. The instructions are retrieved from a
Retirement
...... unit . o sequential instruction stream and are usually scheduled dynamically.
RE‘:;:E’ In;ter::;i:n Instructions
Register Updates Prediction OK? Benefit: without programming effort, superscalar processor can take
advantage of the instruction-level parallelism that most programs have
]))
Units
{ i i i { ! Most modern CPUs are superscalar.
Operation fesuts non| [e Intel: since Pentium (1993)
Cache
Execution
_3- CS 105

CS 105

NC_ C3)y

What Is a Pipeline? 1

o| |

Result
Bucket

-5- CS 105

NC_ C3)y

Pipelined Functional Units

long mult_eg(long a, long b, long c) {
long pl = a*b;
long p2 = a*c;
long p3 = pl * p2;
return p3;
}
Time
1 2 3 4 5 6 7
Stage 1 a*b a*c 'pl;pz
Stage 2 a*b a*e P1l*p2
Stage 3 a*b a*e Pl*p2
m Divide computation into stages
m Pass partial computations from stage to stage
m Stage i can start new computation once values passed to i+1
= E.g., complete 3 multiplications in 7 cycles, even though each requires 3 cycles
—6- CS 105

NC_ C3)y

Haswell CPU T

O

= 8 Total Functional Units

Multiple instructions can execute in parallel
2 load, with address computation
1 store, with address computation
4 integer
2 FP multiply
1FP add
1 FP divide

Some instructions take > 1 cycle, but can be pipelined
Instruction Latency Cycles/Issue
Load / Store 4 1
Integer Multiply 3 1
Integer/Long Divide 3-30 3-30
Single/Double FP Multiply 5 1
Single/Double FP Add 3 1

_7- Single/Double FP Divide 3-15 3-15 €S 105

NC_ C3)y

x86-64 Compilation of Combine4 7

O
Inner Loop (Case: Integer Multiply)
.L519: # Loop:
imull (%rax,%rdx,4), %ecx # t =t * d[i]
addq $1, %rdx # i+t
cmpg %rdx, %rbp # Compare length:i
ig .L519 # If >, goto Loop
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Latency 1.00 3.00 3.00 5.00
Bound
_g- €S 105

HAIC_ CS3y

WS,y

. . . *) . }
Combine4 = Serial Computation (OP = *) iy Loop Unrolling (2x1) i
o @}
1d, Computation (length=8) void unroll2a_combine (vec_ptr v, data_t *dest)
(O * dfo1) * d[i1) * d[2]) * d[3]) { fiery ATl © SR ICTERRGD)s
(%) a * dl4]) * &Is1) * dl6]) * &[7D) long limit = length-1;
2 data_t *d = get_vec_start (v);
(*)a, Sequential dependence it 01 O ey
mn Performance: determined by latency of OP long i;
(*)aq /* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
u d, x = (x OP d[i]) OP d[i+l];
}
/* Finish any remaining elements */
for (; i < length; i++) {
x = x OP d[i];
}
*dest = x;
}
Perform 2x more useful work per iteration
-9- CS 105 -10- CS 105
HIC_CS)y HAC CS)y
. ; . . . s 5
Effect of Loop Unrolling 1 Loop Unrolling with Reassociation (2x1a) {2
@) @)
Method Integer Double FP void unroll2aa_combine (vec_ptr v, data_t *dest)
{
Operation Add Mult Add Mult long length = vec_length(v);
; long limit = length-1;
Combine4 1.27 3.01 3.01 5.01 data t *d = get_vec_start(v);
Unroll 2x1 1.01 3.01 3.01 5.01 data_t x = IDENT;
long i;
Ié::)t::gy 1.00 3.00 3.00 5.00 /% Combine 2 elements at a time */ Comnareto before
for (i = 0; i < limit; i+=2) {
x = x OP (d[i] OP d[i+l]); x = (x OP d[i]) OP d[i+1];
}
‘x = (x OP d[i]) OP d[i+l]; /* Finish any remaining elements */
H = . . for (; i < length; i++) {
Helps integer add by reducing number of overhead instructions , x = x OP d[il;
= (Almost) achieves latency bound *dest = x;
e)
Others don’t improve. Why? | -
= Still sequential dependency Can this change result of computation?
- s 105 _1»_ Yes, for multiply and floating point. Why? s 10

WS,y

Effect of Reassociation 1

Reassociated Computation

WS,y

O O
Method Integer Double FP What changed:
Operation Add Muit Add Muit x = x OP (d[i] OP d[i+1]); = Operations in the next iteration can be
Combine4 1.27 3.01 3.01 5.01 started early (no dependency)
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51 Overall Performance
'.5?3,','5" 1.00 3.00 3.00 5.00 u N elements, D cycles latency/op
m (N/2+1)*D cycles:
'éhroughput 0.50 1.00 1.00 0.50 (CPE =)D/2 4
oun
|3
Nearly 2x speedup for Int *, FP +, FP *
. : 2 functional units for FP *
= Reason: Breaks sequential dependency 2 functional units for load
lx = x OP (d[i] OP d[i+1]);
4 functional units for int +
= Why is that? (next slide) 2 functional units for load
13- €S 105 —14- €S 105
Loop Unro"ing WC')CS! Eff WC')CS[
: %) ect of Separate Accumulators {2
with Separate Accumulators (2x2) o P o
void unroll2a_combine (vec_ptr v, data_t *dest) Method Integer Double FP
{ VT Fror it i T) Operation Add Mult Add Mult
long limit = length-1; ' Combine4 127 3.01 3.01 5.01
data_t *d = get_vec_start (v);
data_t x0 = IDENT; Unroll 2x1 1.01 3.01 3.01 5.01
data_t x1 = IDENT; Unroll 2x1a 1.01 1.51 1.51 2.51
long i;
/* Combine 2 elements at a time */ Unroll 2x2 0.81 1.51 1.51 2.51
for éi = g"o; ;[_l]i“‘it" i+=2) { Latency Bound 1.00 3.00 3.00 5.00
x0 = x i]l;
x1 = x1 OP d[i+1]; Throughput Bound 0.50 1.00 1.00 0.50
}
for CiSh B0Y remaining elements ¥/ Int + makes use of two load units
x0 = x0 OP d[il; x0 = x0 OP d[i];
} x1 = x1 OP d[i+l];
*dest = x0 OP x1;
}
Diff ; r — 2x speedup (over unroll2) for Int *, FP +, FP *
s ifferent form of reassociation cs 105 e cs 105

HAC €S}y HAC CS)y
Separate Accumulators iy Unrolling & Accumulating i
O O
Idea
%0 = x0 OP d[i]; = What changed: = Can unroll to any degree L
x1 = x1 OP d[i+l]; ® Two independent “streams” of operations u Can accumulate K results in parallel
= L must be multiple of K
m Overall Performance
= N elements, D cycles latency/operation
- zlr\,(;uidnk/);(N/2+1)*D cycles: Limitations
= CPE matches prediction! m Diminishing returns
e Cannot go beyond throughput limitations of execution units
= May run out of registers for accumulators
What Now? m Large overhead for short lengths
o Finish off iterations sequentially
-17- CS 105 -18- CS 105
HAC €S}y HAC CS)y
Unrolling & Accumulating: Double * {2 Unrolling & Accumulating: Int + {2
O O
Case Case
u Intel Haswell u Intel Haswell
= Double FP Multiplication = Integer addition
= Latency bound: 5.00. Throughput bound: 0.50 = Latency bound: 1.00. Throughput bound: 1.00
FP * Unrolling Factor L FP * Unrolling Factor L
K 1 2 3 4 6 8 10 12 K 1 2 3 4 6 8 10 12
1 501 501 501 501 501 501 5.01 1 127 101 101 101 101 101 1.01
2 2.51 2.51 2.51 2 0.81 0.69 0.54
3 1.67 3 0.74
Number of 4 1.25 1.26 Number of 4 0.69 124
Accumulators 6 0.84 0.88 Accumulators 6 0.56 0.56
8 0.63 8 0.54
10 0.51 10 0.54
12 0.52 12 0.56
-19- CS 105 -20- CS 105

NC_ C3)y

MC_C8)y
-))
Achievable Performance {2 What About Branches? {2
o @}
Method Integer Double FP Challenge
Operation Add Mult Add Mult nInstruction Control Unit must work well ahead of Execution Unit
Best 0.54 1.01 1.01 0.52 to generate enough operations to keep EU busy
Latency Bound 1.00 3.00 3.00 5.00
404663: mov $0x0, Seax Executing
Throughput Bound 0.50 1.00 1.00 0.50 404668: cmp (%rdi), %rsi
40466b: jge 404685 «—t How to continue?
40466d: mov 0x8 (%rdi) , $rax
Limited only by throughput of functional units
Up to 42X improvement over original, unoptimized code
404685: repz retqg
nWhen encounters conditional branch, cannot reliably determine where to continue
fetching
-21- CS 105 —-22- CS 105
HMC_C)y MC_C8)y
H))
Modern CPU Design {2 Branch Outcomes {2
@) @)

Retirement

Unit
[
File

Instruction Control

Address

Instruction

Instruction PN Coche

Decode

Register Updates

Prediction OK?

Functional

LIl TE

])

23—

Operation Results

Adar Add)
Data Data
Data
Cache
Execution

CS 105

» When encounter conditional branch, cannot determine where to continue fetching
e Branch Taken: Transfer control to branch target

e Branch Not-Taken: Continue with next instruction in sequence
m Cannot resolve until outcome determined by branch/integer unit

404663: mov
404668: cmp
40466b: jge
40466d: mov

$0x0, $eax
(%rdi), $rsi
404685 —_—

0x8 (3rdi) , Srax ? Branch Not-Taken

Branch Taken

404685: repz retqg

—24- CS 105

Branch Prediction

Idea

M CS)y
n

m Guess which way branch will go

m Begin executing instructions at predicted position
e But don’t actually modify register or memory data

Branch Prediction Through Loop

401029: wvmulsd (%rdx), $xmm0, $xmmO

40102d: add $0x8,%rdx
401031: cmp %$rax, $rdx o
401034: 3ne 401029 i=98

401029: vmulsd (%rdx), $xmm0, $xmmO
40102d: add $0x8, $rdx
401031: cmp $rax, $rdx

401034: 3ne 401029 i=99

HMCCS)y
n

Assume

vector length = 100

7 Predict Taken (OK)

404663: mov $0x0, Seax ﬁ Predict Taken
A8 G (o) o oL . 401029: vmulsd (%rdx),Sxmm0, Sxmm0 (Oops) T
40466b: jge 404685 = Predict Taken 40102d: add $0x8, srdx —
40466d: 0x8 (%rdi), % § Read Executed
: mov x8 (%rdi) , srax 401031: cmp $rax, $rdx ea
401034: jne 401029 i=100 invalid
location
Begin 401029: 1sd (%rdx), $xmm0, $xmm0
404685: repz ret N 8 o (RS, e, T
E & } Execution 40102d: add $0x8, Srdx Fetched
401031: cmp $rax, $rdx L
401034: jne 401029 i=101
-25- €S 105 26— €S 105
HC_C8)y HAIC_ CS3y

Branch Misprediction Invalidation

401029: vmulsd (%rdx),$xmm0, $xmm0 Assume
40102d: add $0x8, srdx vector length = 100
401031: cmp $rax, $rdx .
401034: 3ne 401029 i=98
7 Predict Taken (OK)

401029: vmulsd (%rdx), $xmm0, $xmmO
40102d: add $0x8, srdx
401031: cmp $rax, $rdx .
401034: 3ne 401029 i=99

ﬁ Predict Taken
T TP — (0ops)
401024+ add $0%8, Szd
463033+ = ran brd
401034+ 35 401029 i=100

ﬁ Invalidate
401029+ Led—(Yrdi), bummo, brmmo
401024 ad $028, Y=d
401031 M

: e 7 =

401034 401029 i=101

—27 -

CS 105

Branch Misprediction Recovery

401029: vmulsd (%rdx), $xmm0, $xmm0
40102d: add $0x8, $rdx i=99
401031: cmp %$rax, $rdx

401034: jne 401029 ﬁ
401036: jmp 401040

401040: vmovsd $xmmO, (%$rl2)

Performance Cost
= Multiple clock cycles on modern processor
m Can be a major performance limiter

Definitely not taken

Reload
Pipeline

m Current CPUs (2019) speculate 150 or more instructions ahead!

—28—

CS 105

Getting High Performance

WS,y

Visualizing Operations

WS,y

$rdx.0
. . load (%rax,%rdx.0,4)=> t.1

Use a good compiler and appropriate flags L o1l @ Oy e

s : A incl %rdx.0 = $rdx.1
Don’t do anything stupid el S e S sl

m Watch out for hidden algorithmic inefficiencies jl-taken cc.1

m Write compiler-friendly code

e Watch out for optimization blockers: Time :
procedure calls & memory references — Operatlons
u Look carefully at innermost loops (where most work is done) . Vertlcilgosmon denotes time at which
execute

Tune code for machine U seexa e Cannot begin operation until operands

» Exploit instruction-level parallelism available

= Avoid unpredictable branches = Height denotes latency

= Make code cache-friendly Operands
But DON’T OPTIMIZE UNTIL IT’S DEBUGGED!!! = Arcs shown only for operands that are

passed within execution unit
-29- CS 105 -30- CS 105
HMC_ CS)y HAC_CS)y
. . .] . _
3 lterations of Combining Product {2 4 lterations of Combining Sum {2
O

4rax.0

imull

8 Iteration 1

o imu11 [i=1
10 Cycle
" srex.2
12 Iteration 2

rax.3
fe3

—31-

Unlimited-Resource
Analysis
= Assume operation can
start as soon as
operands available
m Operations for multiple
iterations overlap in
time
Performance
m Limiting factor
becomes latency of
integer multiplier
= Gives CPE of 4.0

CS 105

Iteration 2

Alinteger ops |

Iteration 3

Unlimited-Resource Analysis
Performance

Iteration 4

= Can begin a new iteration on each clock cycle

= Should give CPE of 1.0

= Would require executing 4 integer operations in parallel

-32-

CS 105

Combining Sum: Resource Constraints ST Visualizing Parallel Loop 1
(@] sadx 0 e}

= Two multiplies within loop no longer Sedx.1
have data dependency

m Allows them to pipeline

%ecx.0
7 t.1a)
tedx.6

load

P - %ebx.0
. lteration4 __ e m"
 eraons] S imull Time
13
" reos 18 B
Iteration 6
15 g load (%eax,%edx.0,4) = t.la =
= Suppose only have two integer functional units imull t.la, %ecx.0 2> %ecx.1 \) tebx.1
= Some operations delayed even though operands o load 4 (%eax, %edx.0,4) & t.1b
available eraton imull t.1b, %ebx.0 > s%ebx.1
L id iaddl $2,%edx.0 > %edx.1
n Set priority based on program order teration s o, Eprl St 3 co1
Performance jl-taken cec.l
a3 m Sustains CPE of 2.0 €S 105 —34- €S 105
HMC_ CS)y HAC CS)y
= =))
Executing with Parallel Loop iy Meltdown and Spectre i
o0 e} o

Consider a few things
m Access to cached things is much faster than to non-cached ones

m Programs have access to detailed timing information
o Intel offers free-running cycle counter to all programs
e Thus, can tell whether something was cached

m OS has access to everything

el e Carefully checks whether you have access before giving stuff to you
€. delayed 1 clock . .
0 Heration 1 $ IrEr:yvetha‘(A:éri‘::gram = CPU speculates many instructions ahead
© Gyl - et S L) ® Must guess about branch directions
imull
1" " ez m User programs can either flush cache (c1£1ush instruction) or clobber with loop
12 iz) e |

m Predicted Performance
® Can keep 4-cycle multiplier busy performing two simultaneous
multiplications
e Gives CPE of 2.0

rrrrrrrrrr b

—35-

> CS 105 -36-— CS 105
Iteration 3

WS,y

Meltdown and Spectre {2}

Trick OS into doing these steps:
m Check whether you have access to arbitrary location x (you don’t)
m Mispredict that branch

= Read location x and use its contents as follows:
e Extract bit b
o Multiply (shift left) bit b by, e.g., 1024
e Access array y[b*1024] that you do have access to
= Hardware will eventually discover mispredicted branch and cancel all those
instructions
® ...but cache now contains y[b*1024]

Scan cache to see whether y[0] or y[1024] is fast (i.e., in cache)
= You now know bit b of location x
m Lather, rinse, repeat until you know all bits of x

m Lather, rinse, repeat for all locations you want to read
-37- €S 105

So What?

Can read arbitrary memory at about 2K bits/second
= No biggie on your laptop
m Huge issue in the cloud
o Physical machines often shared
e Supposedly isolated by virtual-machine technology
m Grab people’s encryption keys, passwords, all sorts of stuff
= Next stop: Putin

What to do?
= Disabling speculation kills performance
= Only certain branches are vulnerable
e Can do special things for those branches
® But hard to find (millions of lines in kernel)

= Compiler can try to identify risky branches

© But will be conservative & OS will slow down
—-38-

WS,y

CS 105

