

Wireshark Lab:
Getting Started v7.0

Adapted by HMC from the supplement to Computer

Networking: A Top-Down Approach, 7
th

 ed., J.F.

Kurose and K.W. Ross

“Tell me and I forget. Show me and I remember. Involve me and I

understand.” Chinese proverb

© 2005-2016, J.F Kurose and K.W. Ross, All Rights Reserved

One’s understanding of network protocols can often be greatly deepened by “seeing

protocols in action” and by “playing around with protocols” – observing the sequence of

messages exchanged between two protocol entities, delving down into the details of

protocol operation, and causing protocols to perform certain actions and then observing

these actions and their consequences. This can be done in simulated scenarios or in a

“real” network environment such as the Internet. In the Wireshark labs you’ll be doing in

this course, you’ll be running various network applications in different scenarios using

your own computer (or you can borrow a friend’s; let me know if you don’t have access

to a computer where you can install and run Wireshark). You’ll observe the network

protocols in your computer in action, interacting and exchanging messages with protocol

entities executing elsewhere on the Internet. Thus, you and your computer will be an

integral part of these “live” labs. You’ll observe, and you’ll learn, by doing.

In this first Wireshark lab, you’ll get acquainted with Wireshark, and make some simple

packet captures and observations.

The basic tool for observing the messages exchanged between executing protocol entities

is called a packet sniffer. As the name suggests, a packet sniffer captures (“sniffs”)

messages being sent from and received by your computer; it will also typically store or

display the contents of the various protocol fields in these captured messages. A packet

sniffer is itself passive. It observes messages being sent and received by applications and

protocols running on your computer, but never sends packets itself. Similarly, received

packets are never explicitly addressed to the packet sniffer. Instead, a packet sniffer

receives a copy of packets that are sent from and received application and protocols

executing on your machine.

Figure 1 shows the structure of a packet sniffer. At the right of Figure 1 are the protocols

(in this case, Internet protocols) and applications (such as a Web browser or ftp client)

that normally run on your computer. The packet sniffer, shown within the dashed

rectangle in Figure 1 is an addition to the usual software in your computer, and consists

of two parts. The packet capture library receives a copy of every link-layer frame that

is sent from or received by your computer. Recall from the discussion from section 1.5 in

the text (Figure 1.24
1
) that messages exchanged by higher layer protocols such as HTTP,

FTP, TCP, UDP, DNS, or IP all are eventually encapsulated in link-layer frames that are

transmitted over physical media such as an Ethernet cable. In Figure 1, the assumed

physical medium is an Ethernet, and so all upper-layer protocols are eventually

encapsulated within an Ethernet frame. Capturing all link-layer frames thus gives you all

messages sent from and received by all protocols and applications executing in your

computer.

operating
system

application

 packet
capture
(pcap)

copy of all Ethernet
frames sent/received

application (e.g., www
browser, ftp client)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Physical

packet
analyzer

packet sniffer

Figure 1: Packet sniffer structure

to/from network to/from network

The second component of a packet sniffer is the packet analyzer, which displays the

contents of all fields within a protocol message. In order to do so, the packet analyzer

must “understand” the structure of all messages exchanged by protocols. For example,

suppose we are interested in displaying the various fields in messages exchanged by the

HTTP protocol in Figure 1. The packet analyzer understands the format of Ethernet

frames, and so can identify the IP datagram within an Ethernet frame. It also understands

the IP datagram format, so that it can extract the TCP segment within the IP datagram.

Finally, it understands the TCP segment structure, so it can extract the HTTP message

contained in the TCP segment. Finally, it understands the HTTP protocol and so, for

example, knows that the first bytes of an HTTP message will contain the string “GET,”

“POST,” or “HEAD,” as shown in Figure 2.8 in the text.

We will be using the Wireshark packet sniffer [http://www.wireshark.org/] for these labs,

allowing us to display the contents of messages being sent from and received by

protocols at different levels of the protocol stack. (Technically speaking, Wireshark is a

packet analyzer that uses a packet-capture library in your computer). Wireshark is a free

network protocol analyzer that runs on Windows, Mac, and Linux/Unix computers. It’s

an ideal packet analyzer for our labs – it is stable, has a large user base and well-

documented support that includes a user guide

1
 References to figures and sections are for the 7

th
 edition of our text, Computer Networks, A Top-down

Approach, 7
th

 ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2016.

http://www.wireshark.org/

(http://www.wireshark.org/docs/wsug_html_chunked/), man pages

(http://www.wireshark.org/docs/man-pages/), and a detailed FAQ

(http://www.wireshark.org/faq.html), rich functionality that includes the capability to

analyze hundreds of protocols, and a well-designed user interface. It operates in

computers using Ethernet, serial (PPP and SLIP), 802.11 wireless LANs, and many other

link-layer technologies (if the OS on which it's running allows Wireshark to do so).

Getting Wireshark

To run Wireshark, you will need access to a computer that supports both Wireshark and

the libpcap or WinPCap packet capture library. The libpcap software will be installed for

you, if it is not installed within your operating system, when you install Wireshark. See

http://www.wireshark.org/download.html for a list of supported operating systems and

download sites.

If you don’t feel like installing Wireshark, it is already preinstalled on the Macs in the CS

labs, and you have been placed into a special group that allows you to run it.
2

On your own computer, download and install the Wireshark software:

 Go to http://www.wireshark.org/download.html and download and install the

Wireshark binary for your computer (Linux users should scroll to the bottom of

the page; on most Linux distributions Wireshark is a standard package).

The Wireshark FAQ has a number of helpful hints and interesting tidbits of information,

particularly if you have trouble installing or running Wireshark.

Running Wireshark

When you run Wireshark, you’ll get a startup screen that looks something like the one

below. Different versions of Wireshark will have different startup screens – so don’t

panic if yours doesn’t look exactly like the screen below! The Wireshark documentation

states “As Wireshark runs on many different platforms with many different window

managers, different styles applied and there are different versions of the underlying GUI

toolkit used, your screen might look different from the provided screenshots. But as there

are no real differences in functionality these screenshots should still be well

understandable.” Well said.

2
 Because packet sniffers can be used to spy on other people, we restrict access. You are on your honor to

snoop only on yourself.

http://www.wireshark.org/docs/wsug_html_chunked/
http://www.wireshark.org/docs/man-pages/
http://www.wireshark.org/faq.html
http://www.wireshark.org/download.html
http://www.wireshark.org/download.html

Figure 2: Initial Wireshark Screen

There’s not much interesting on this screen. But note that under the Capture section,

there is a list of so-called interfaces. The computer that these screenshots were taken

from has just one real interface – “Wi-Fi en0,” which is the interface for Wi-Fi access.

All packets to and from this computer will pass through that Wi-Fi interface, so it’s here

where we want to capture packets. On a Mac, double click on this interface (or on

another computer locate the interface on startup page through which you are getting

Internet connectivity, e.g., mostly likely a WiFi or Ethernet interface, and select it).

Some versions of Wireshark offer an “any” pseudo-interface, which can be a handy way

to capture without worrying about hardware details.

Let’s take Wireshark out for a spin! If you click on one of these interfaces to start packet

capture (i.e., for Wireshark to begin capturing all packets being sent to and from that

interface), a screen like the one below will be displayed, showing information about the

packets being captured. Once you start packet capture, you can stop it by using the

Capture pull down menu and selecting Stop; in some versions you can also just push the

Stop button in the window that pops up when capture starts.

listing of

captured

packets

details of

selected

packet

header

packet content

in hexadecimal

and ASCII

display filter

specification

command

menus

Figure 3: Wireshark Graphical User Interface, during packet capture and analysis

This looks more interesting! The Wireshark interface has five major components:

 The command menus are standard pulldown menus located at the top of the

window. Of interest to us now are the File and Capture menus. The File menu

allows you to save captured packet data or open a file containing previously

captured packet data, and exit the Wireshark application. The Capture menu

allows you to begin packet capture.

 The packet-listing window displays a one-line summary for each packet

captured, including the packet number (assigned by Wireshark; this is not a

packet number contained in any protocol’s header), the time at which the packet

was captured, the packet’s source and destination addresses, the protocol type,

and protocol-specific information contained in the packet. The packet listing can

be sorted according to any of these categories by clicking on a column name. The

protocol type field lists the highest-level protocol that sent or received this packet,

i.e., the protocol that is the source or ultimate sink for this packet.

 The packet-header details window provides details about the packet selected

(highlighted) in the packet-listing window. (To select a packet in the packet-

listing window, click on its one-line summary in the packet-listing window).

These details include information about the Ethernet frame (assuming the packet

was sent or received over an Ethernet interface) and IP datagram that contains this

packet. The amount of Ethernet and IP-layer detail displayed can be expanded or

minimized by clicking on the plus and minus boxes (or right and down arrows,

depending on your version) to the left of the Ethernet frame or IP datagram line in

the packet details window. If the packet has been carried over TCP or UDP, TCP

or UDP details will also be displayed, which can similarly be expanded or

minimized. Finally, details about the highest-level protocol that sent or received

this packet are also provided.

 The packet-contents window displays the entire contents of the captured frame,

in both ASCII and hexadecimal format.

 Towards the top of the Wireshark graphical user interface, is the packet display

filter field, into which a protocol name or other information can be entered to

filter the information displayed in the packet-listing window (and hence the

packet-header and packet-contents windows). In the example below, we’ll use

the packet-display filter field to have Wireshark hide (not display) packets except

those that correspond to HTTP messages.

Taking Wireshark for a Test Run

The best way to learn about any new piece of software is to try it out! Do the following

1. Start up your favorite Web browser, which will display your selected home page.

2. Start Wireshark. You will initially see a window similar to that shown in Figure

2. Wireshark has not yet begun capturing packets.

3. To begin packet capture, select the Capture pull down menu and select Interfaces.

This will cause the “Wireshark: Capture Interfaces” window to be displayed, as

shown in Figure 4.

 Figure 4: Wireshark Capture Interface Window

4. You’ll see a list of the interfaces on your computer as well as a count of the

packets that have been observed on that interface so far. Choose either the “any”

interface, or the one on which the packet count is increasing, and click Start (in

this example, the Gigabit network Connection). Packet capture will now begin –

Wireshark is now capturing all packets being sent from and received by your

computer!

5. Once you begin packet capture, a window similar to that shown in Figure 3 will

appear. This window shows the packets being captured. By selecting Stop from

the Capture pulldown menu, you can stop packet capture. But don’t do that yet;

let’s capture some interesting packets first. To do so, we’ll need to generate some

network traffic. Let’s do so using a Web browser, which will use the HTTP

protocol (which we will later study in detail in class) to download content from a

Web site.

6. While Wireshark is running, enter this URL:

http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html

and have that page displayed in your browser. To display this page, your browser

will contact the HTTP server at gaia.cs.umass.edu and exchange HTTP messages

with it, as discussed in section 2.2 of the text. The Ethernet frames containing

these HTTP messages (as well as all other frames passing through your Ethernet

adapter) will be captured by Wireshark.

7. After your browser has displayed the INTRO-wireshark-file1.html page (it is a

simple one line of congratulations), stop packet capture by selecting “stop” in the

Wireshark capture window. The main Wireshark window should now look

similar to Figure 3. You now have live packet data that contains all protocol

messages exchanged between your computer and other network entities! The

HTTP message exchanges with the gaia.cs.umass.edu Web server should appear

somewhere in the listing of packets captured. But there will be many other types

of packets displayed as well (see, e.g., the many different protocol types shown in

the Protocol column in Figure 3). Even though the only action you took was to

download a Web page, there were evidently many other protocols running on

your computer that are unseen by the user. We’ll learn much more about these

protocols as we progress through the text. For now, you should just be aware that

there is often much more going on than meets the eye!

http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html

8. Type in “http” (without the quotes, and in lower case – all protocol names are

lowercase in Wireshark) into the display filter specification window at the top of

the main Wireshark window. Then select Apply (to the right of where you entered

“http”). This will cause only HTTP messages to be displayed in the packet-listing

window.

9. Find the HTTP GET message that was sent from your computer to the

gaia.cs.umass.edu HTTP server. (Look for an HTTP GET message in the “listing

of captured packets” portion of the Wireshark window (see Figure 3) that shows

“GET” followed by the gaia.cs.umass.edu URL that you entered. When you

select the HTTP GET message, the Ethernet frame, IP datagram, TCP segment,

and HTTP message header information will be displayed in the packet-header

window
3
. By clicking on ‘+’ and ‘-‘ right-pointing and down-pointing arrowheads

to the left side of the packet details window, minimize the amount of Frame,

Ethernet, Internet Protocol, and Transmission Control Protocol information

displayed. Maximize the amount information displayed about the HTTP protocol.

Your Wireshark display should now look roughly as shown in Figure 5. (Note, in

particular, the minimized amount of protocol information for all protocols except

HTTP, and the maximized amount of protocol information for HTTP in the

packet-header window).

10. Answer the questions on the last page.

11. Exit Wireshark

Congratulations! You’ve now completed the first lab.

3
 Recall that the HTTP GET message that is sent to the gaia.cs.umass.edu web server is contained within a

TCP segment, which is contained (encapsulated) in an IP datagram, which is encapsulated in an Ethernet

frame. If this process of encapsulation isn’t quite clear yet, review section 1.5 in the text

Figure 5: Wireshark window after step 9

What to hand in

The goal of this first lab was primarily to introduce you to Wireshark. The following

questions will demonstrate that you’ve been able to get Wireshark up and running, and

have explored some of its capabilities. Answer the following questions, based on your

Wireshark experimentation:

1. List three different protocols that appear in the protocol column in the unfiltered

packet-listing window in step 7 above.

2. How long did it take from when the HTTP GET message was sent until the HTTP

OK reply was received? (By default, the value of the Time column in the packet-

listing window is the amount of time, in seconds, since Wireshark tracing began.

To display the Time field in time-of-day format, select the Wireshark View pull

down menu, then select Time Display Format, then select Time-of-day. Are there

other options that might be useful? Watch out for the difference between

“captured” and “displayed”!)

3. What is the Internet address of the gaia.cs.umass.edu (also known as www-

net.cs.umass.edu)? What is the Internet address of your computer?

4. If you wish, you can print the two HTTP messages (GET and OK) referred to in

question 2 above. To do so, select Print from the Wireshark File command menu,

and select the “Selected Packet Only” and “Print as displayed” radio buttons, and

then click OK.

5. Type your answers to questions 1-3 into a plain text file (NOT a Word

document!) and submit it as assignment 1 using cs125submit.

